MENU

Party Walls

Leveraging LEED for New Construction Post-COVID Part 2

LEED: Toolkit for a Healthy and Resilient Post-COVID Built Environment

At SWA, we have used LEED across a wide range of projects and contexts. We have seen firsthand its strength as an adaptable toolkit for guiding high performance building design, construction, and operation. The intent of each LEED credit category takes on a particular meaning, both locally and globally, in response to the emergence of such factors as global climate change and its associated consequences—including pandemics. In the post-COVID context, these intents will take on new meaning and new urgency. Read Part 1 of this blog here!

image of coal plant

Credit: Arnold Paul

The overall goal of the LEED rating system is to reduce the negative impacts of the built environment on environmental and human health. Ideally, this focus contributes to our general, overall resilience to public health crises such as the COVID-19 pandemic by reducing and mitigating various factors that make us more vulnerable to diseases. For example, we know that long-term exposure to air pollution and poor air quality dramatically increases the chances of dying from COVID-19 and that most of the same pre-existing conditions that increase the risk of death for COVID-19 are the same diseases exacerbated by exposure to air pollution. Anything we can do to improve air quality will also improve our resilience to disease. Most significantly, we need to move away from fossil fuel-based energy and toward clean, renewable energy—and a large portion of LEED is focused on doing just that.

As researchers have noted, many of the root causes behind climate change also contribute to a greater risk of pandemics. An example is deforestation and associated habitat loss, which forces wildlife to migrate, bringing novel viruses into closer contact with livestock and humans, and increasing the odds of disease transmission. On top of that, by altering temperature and rainfall patterns, climate change has created conditions that are more conducive to the spread of disease in general. So, the strategies we need to enact now to address the climate crisis—many of which are addressed in LEED credits—can also mitigate the occurrence, scale, and impacts of future disease outbreaks.

(more…)

Accessibility Tech Notes: Automatic Doors

image of "Caution Automatic Door" signAs the country continues to confront the realities of the COVID-19 pandemic, the way we navigate spaces is changing. One of these changes is the way we interact with common use objects that traditionally require hand-operation, like doors. While automatic doors have always been a good option for providing greater access to people with disabilities, hygiene concerns associated with the spread of disease have presented another argument for their use. The rise of touchless technology as a result of this pandemic will increase the use of automatic doors not just for accessibility or convenience, but for public health as well. For anyone considering incorporating automatic doors into their designs, either for new construction or as a retrofit, here are some important things to consider:

(more…)

Leveraging LEED for New Construction Post-COVID Part 1

In the post-COVID world, there needs to be a greater awareness that the built environment can protect and promote human and environmental health. Buildings can, and must, play a critical role in delivering a stronger, more resilient public health infrastructure that can help prevent and mitigate crises such as the SARS-CoV-2 pandemic. The good news is that we already have effective tools for designing, constructing, and operating such buildings—chief among them LEED and the WELL Building Standard.

We believe people are now more conscious of how the built environment affects their health. As a result, we’re likely to see an increase in investment in sustainable building design, construction, and operation and a corresponding increase in demand for green building rating systems such as LEED and WELL. We may also see the green and healthy building concepts that are included in these systems increasingly integrated into building codes.

USGBC plaque

[Credit: Blanchethouse (username) / Source: https://commons.wikimedia.org]

Certification programs (e.g., LEED and WELL) have been developed though collective effort. They are extremely effective and adaptable tools that project teams can use to ensure that their buildings achieve the best possible performance in terms of protecting environmental and human health. Importantly, these programs continue to evolve, offering ever more effective strategies for improving the built environment, ensuring that buildings adapt to whatever circumstances may arise in uncertain times. But right now, project teams can make immediate use of LEED and WELL, and similar tools, to start preparing for the new reality ushered in by the COVID-19 pandemic.

How can project teams leverage LEED now? In this series, we’ve highlighted the LEED credits that can be used to guide efforts to make our buildings safe, healthy, and resilient. (In a follow-up series we’ll discuss the WELL features that can be used to guide our post-COVID building work.)

(more…)

Interesting Elements: A Modeling View on Net Zero Homes

I recently performed some net zero energy modeling on a single-family home for work. Around the same time, I got to chatting with my neighbor (mindful of social distancing) and when I mentioned net zero,  he said, “Is that even possible?” AH! Get the word out. We have the means to offset our home energy use. What follows are the basics to consider when trying to fully offset home energy along with a breakdown of how different upgrades can affect energy use.

There are lots of resources available on how to reduce home energy use. You can look at program requirements and guidelines like the Zero Energy Ready Program or Passive House. Through modeling I will demonstrate how the energy use numbers change and describe what we have seen in real-world examples of net zero homes. Net zero is not new and we’ll be looking at some specific pieces of single family home modeling.

(more…)

The Great Indoors: Creating a Healthier and Safer Built Environment

Image of elderly couple sitting on a bench laughingAs humans, we spend a lot of time indoors. Studies by the U.S. Environmental Protection Agency indicate that under normal circumstances the average American spends over 90% of their life indoors. With the spread of COVID-19 and widespread voluntary and involuntary quarantine, the rise of work from home policies and new direction to social distance has resulted in a further increase to the amount of time we spend indoors. Now more than ever, people are cognizant of the air they’re breathing and the surfaces they’re touching. The buildings that we live, work and play in impact our physical and mental health. With certain building and design considerations, we can make these impacts beneficial.

We recruited some experts at SWA to fill us in on the various considerations when it comes to the health and comfort of a building, as well as some certifications that assure these considerations are met.

(more…)

How to Talk Windows with a Passive House Nerd

Before we get into this topic, please take a few seconds to consider the following questions:

  • Do you plan to work, or have you ever worked, on a Passive House building? (If not, the rest of your answers are probably no.)
  • Has your Passive House consultant ever told you that the window U-Value you provided “won’t work in their energy model?”
  • Has your Passive House consultant ever told you that your window “doesn’t meet the comfort criteria?”
  • Have you ever scratched your head when someone asked you to provide the “Psi-spacer” for your window?

If you answered yes to two or more of these queries, please read on. If not, you’ll still learn some useful information, so why not continue?

If you’re still reading, then you are probably somewhat familiar with a “U-Value” and you may know what “SHGC” means. If not, no worries. This article will explain both, and by the end you’ll be able to talk about these terms with most Passive House nerds.

(more…)

The 3 Most Important Design and Construction Considerations for Senior Living Facilities

Last year, a young New Zealand lawmaker shut down a fellow member of parliament who was heckling her climate change speech with two words: “OK, Boomer.” This simple phrase started an online wildfire and ignited a conversation about the generation known as “baby boomers.” Born just after World War II, this demographic represents a period of growth, hope, and prosperity. The building, real estate, and senior housing industry has been thinking about the boomer generation for a while now. Between the years 1946 and 1964, 76 million babies were born. Every day until 2030, 10,000 of these individuals will turn 65, which means they will likely be retiring, and eventually considering how and where they want to age. This poses the question: how are we going to meet the growing demand for housing and care for this population?

image of senior couple holding hands and walking

Important Considerations for Senior Living

Whether you or someone you love is considering staying in their home as they age or moving into a senior living facility, there are a few important factors to keep in mind. SWA services for senior living revolve around the following three factors:

(more…)

Net Zero and Electrification

Net zero” can mean a lot of different things depending on what you choose to measure – zero energy usage, zero carbon emitted, zero lifecycle impact, etc.

At Steven Winter Associates, Inc. (SWA), we work with clients who are approaching net zero from different angles: driven by institutional goals, climate concerns, marketing campaigns, and connecting with municipal emissions targets. One thing we see over and over is that super high performance is difficult to achieve, but with a key simplification – there are not many ways to do it. All roads may lead to Rome but the closer you get, the fewer roads there are to take.

(more…)

Choosing Insulation for Carbon Value – Why More is Not Always Better Part 2

In Part 1 of this blog post, we highlighted two of the most commonly used insulations in the U.S.– XPS board and closed-cell polyurethane spray foam – and noted that they are produced with blowing agents (HFC-based) that are putting more carbon into the air during construction than they save during building operation for many decades. We left you with a question: if we don’t use these insulations, how can we make up for the loss of the helpful qualities that has made us dependent on them?

Insulation Alternatives

One part of the answer comes from the development of new materials. In Europe over the last decade, Honeywell developed a new blowing agent, a hydro-fluoro olefin (HFO), which claims a global warming potential (GWP) of less than one, which is less than that of carbon dioxide.  First in Europe, and now in the U.S., manufacturers such as Demilec and Carlisle are coming to market with a closed-cell polyurethane spray foam that uses this blowing agent instead of the HFCs that carry a GWP of well over 1,000. These spray foams have a slightly better R-value  than their high-carbon predecessors, and otherwise have the same qualities that make them useful in multiple contexts – air/vapor barrier capability, conformance to irregularities and penetrations, etc.  However, they also have many of the same downsides – high flammability, potential (and not completely understood) off-gassing post-application, and the basic fact that they are petroleum products.

(more…)

Accessibility Tech Notes: Door Surface

The 2010 ADA Standards and the A117.1 Standard for Accessible and Usable Buildings and Facilities require the bottom 10 inches on the push side of a door to be smooth and free from any obstructions for the full width of the door. While there are some exceptions (e.g., sliding doors or tempered glass doors without stiles), this requirement applies at the following locations:

  • 2010 ADA Standards:
    • Public and Common Use Areas: All doors along the accessible route
    • Accessible Dwelling Units: The primary entry door and all doors within the unit intended for user passage
  • A117.1 Standard:
    • Public and Common Use Areas: All doors along the accessible route
    • Type B Dwelling Units: The primary entry door
    • Type A and Accessible Dwelling Units: The primary entry door and all doors within the unit intended for user passage

The door surface provision is intended to ensure the safety of people with disabilities who require the use of a wheelchair, walker, cane, or other mobility aid. It is common to utilize the toe of the wheelchair or leading edge of another mobility device to push open a door while moving through it. The smooth surface allows the footrest of a wheelchair or other mobility device that comes into contact with the door to slide across the door easily without catching.

(more…)

The owner of this website has made a commitment to accessibility and inclusion, please report any problems that you encounter using the contact form on this website. This site uses the WP ADA Compliance Check plugin to enhance accessibility.