Benefits of Water Metering and Water Monitoring

Water monitoring can quickly become a building owner’s best friend. The high cost of water bills can often overshadow the cost of fuel and electricity bills, but ownership and management often believe that the price of their water bill is simply something to deal with. Many building owners pay the water bill for the entire building directly to their local utility without being aware of what’s going on inside their building or what they’re actually paying for. After all, without water monitoring, how would they know?

Water monitoring can impact an owner’s bottom line due to the high costs of leaks, which are more pervasive than you’d think.

Types of Leaks

Image of toilet with components labeled

Source: http://michaelhannan.co/wp-content/uploads/2018/08/diagram-of-digestive-system-in-hindi-toilet-bowl-parts-tank-repair.jpg

While any water fixture can contribute to leaks and high water bills, toilets are typically the worst offenders. In toilets, rubber flappers can wear out, a flapper connected to the flush handle can have an incorrectly sized chain interfering with the seal, float mechanisms on the flush valve can be set too high causing the water level to go just above the overflow tube, or there can be tenant tampering.

Showers and sinks can also start leaking at any time. While typically at much lower capacities, these leaks can actually be easier to detect. By monitoring the water consumption in a building and observing hourly usage overnight, you can identify patterns that can quickly indicate a leak, eliminating the need to visually inspect all water fixtures in a building to determine the cause.

Cost of Leaks

The idea that a single leak can last for an entire year may seem unreasonable, though the sad truth is many leaks can go undetected and/or unreported. To put water leaks into perspective, the chart below from the NYC DEP details the potential extent of leaks and their costs on a daily and yearly basis:

Read more

Establishing Moisture Control in Multifamily Buildings

Most of us are familiar with the feeling of a humid apartment after taking a hot shower. Some of us kick on an exhaust fan, perhaps un-fog the bathroom mirror, or even open a window to get the moisture out. Domestic moisture generation—moisture from human activity—is a major factor driving the humidity levels in our residential buildings, especially in super air-tight, Passive House construction. Before diving into just how much of an impact domestic moisture has in our buildings, let’s first look at average daily moisture generation rates of a typical family of three[1]:

  • breathing and transpiration—6 to 9 pounds of water vapor/day;
  • 10-minute shower in the morning for each individual—3.6 pounds of water vapor;
  • cooking fried eggs and bacon for breakfast—0.5 pounds of water vapor;
  • cooking steamed vegetables with pasta for dinner—0.5 to 1.0 pounds of water vapor; and
  • one small dog and a few plants around the house—0.5 pounds of water vapor/day

This brings the daily total to 11.1 to 14.6 pounds of moisture generation per day, or about 1.5 gallons of liquid water.

Where does all of this moisture go? In a typical code-level apartment building with moderate to high-levels of air leakage, water vapor has two year-round exit pathways: exfiltration through the façade and dedicated kitchen or bathroom mechanical exhaust. Additionally, in the summer, moisture is removed via condensate from the cooling system.

Let’s now put this in the context of a highly energy-efficient apartment with very low levels of air leakage (about 5 to 10 times less than the code-compliant unit), and balanced ventilation with energy recovery. The first means of moisture removal, façade exfiltration, is virtually non-existent given the building’s superior air-tight design. Next is mechanical exhaust ventilation in the kitchens and bathrooms. Because the unit has balanced ventilation and energy recovery, the exhaust air stream in a Passive House project typically passes through the energy recovery core. Depending on the core selection, a large percentage of the interior moisture may be retained in the apartment air despite the constant mechanical air exchange.

There are two basic types of cores:

  • Heat recovery ventilator (HRV) in which a certain percentage of sensible heat is recovered (transferred from the exhaust air stream to the supply air stream) while no moisture is recovered.
  • Energy recovery ventilator (ERV) in which a certain percentage of sensible heat and a certain percentage of moisture in the air is recovered.

To fully understand this issue, Figure 1 breaks break down the moisture-related pros and cons of ERVs and HRVs in the context of a high-density, Passive House building.

  ERV HRV
Pros Summer – prevents high exterior air moisture load from being supplied to interior air; cooling loads are minimized Winter – flushes high internal moisture load out of building; humidity levels reduced
Cons Winter – if internal moisture generation is high, interior moisture load is not flushed out of apartment; humidity levels increase Summer – allows exterior air moisture load to be supplied to interior air: cooling loads increase

Figure 1. Moisture related pros and cons with ERVs and HRVs in high efficiency, airtight construction

 

Traditionally, the key factor in deciding between an ERV or HRV for a high-efficiency building has been the project’s climate. However, as internal moisture loads begin to exceed exterior moisture loads in high-density projects, the decision between ERV or HRV must be looked at more closely for each project regardless of climate.

Read more

ERV + AHU?

Everyone pretty much gets that continuous (or very frequent) ventilation is necessary in high-performance homes. And – at least in theory – most people get why balanced, heat recovery ventilation is better (than unbalanced and/or without heat recovery). But the devil’s in the details.

A couple years ago we started an R&D project with funding from DOE’s Building America program, and one of the first steps was interviewing several developers about ventilation (single- and multi-family residential, mostly on the East Coast). For none of these developers were HRVs or ERVs standard.[i] They all had some experience with ERVs, however, and when asked about these experiences the word “nightmare” came up shockingly often.

The ERVs on the market now can certainly work well in the right application, but we see problems more often than not. One of the biggest challenges is trying to add ERVs on to central heating/cooling systems in homes. Most ERVs aren’t really designed for this, and here’s what we see:

  • Ducts connected to the wrong places! Outlet and inlet ducts get reversed, or the supply air from the AHU getting exhausted (sad how often this happens).
  • ERVs are attached to supply and/or return trunks of the AHU. Unless the AHU fan is running constantly (or whenever the ERV is turned on), outdoor air comes into the AHU and is sucked right back out the ERV exhaust.
  • If the AHU fan is turned on, the relatively small fans in the ERV can’t successfully compete with the big AHU fan. People don’t get the ventilation flow rates they want and/or the flows are very unbalanced.
  • AHU fans can use A LOT of electricity. Hundreds of Watts is common – I’ve measured over 1 kW (though this is changing – more below).

Even if installers follow manufacturer instructions for attaching ERVs to AHUs, they could still end up with low flows, unbalanced flows, or high electricity consumption. Through this DOE R&D effort, we’re trying to do better.
Read more

Does Your Exhaust Fan Suck? Part 2

If you recall from Part 1 of this article written back in September, we discussed why exhaust fans often don’t operate as they are intended. Now, let’s discuss how to rectify these issues. First, we need to understand that all fans are not created equal. To do this, SWA participated in a “blind” study that analyzed a number of today’s common exhaust fans. The study emphasizes the importance of fan selection. With this understanding, we will then discuss solutions and best practices for installing bathroom exhaust ventilation.

The “Blind” Study

To get a comprehensive performance dataset for a number of exhaust fans, the Riverside Energy Efficiency Laboratory (REEL) was engaged for a “blind” study. REEL is the HVI/ESTAR neutral, third-party testing facility. In total, 7 multi-speed fans, 7 single speed fans, and 6 low-profile fans from six manufacturers were sent to REEL without manufacturer markings. In general, ten-point airflow tests were conducted on each fan. Testing adhered to standards used in the industry, namely, ANSI/AMCA Standard 210 and HVI Publications 916 and 920, where applicable. While the dataset is extensive, this paper focuses on the 50, 80, and 110 cfm ventilation rates, as these are the most common specified fan speeds for bathrooms. These fan curves show the relationship of airflow that will be delivered at various static pressures of the duct system.

Figure 1 shows fan curves for single speed fans that were tested. The units are rated for 80 cfm unless noted otherwise in the legend (two are rated for 70 cfm and one for 90 cfm). While all of these fans performed in a similar manner, would it surprise you that two of the fan curves in Figure 1 are for exhaust fans that use DC motors? People often assume that all fans using DC motors are the same and result in constant airflow for a range of static pressures (let’s say up to 0.4” w.g.).

Figure 1

Figure 1. Performance Data for Single Speed Exhaust Fans

It is clear in this data (Figure 1) that flow rates decrease rapidly when static pressure rises over 0.3” w.g., as it often does in real world installations. Oh, are you still wondering which two fans have DC motors? It is actually SS-05 and SS-06. A bit surprising, isn’t it?

Read more

Here’s What DC’s New Energy Efficiency Requirements Mean for Existing Buildings

Mayor signing legislationDistrict of Columbia Mayor, Muriel Bowser, signed a landmark piece of legislation known as the Clean Energy DC Omnibus Amendment Act this past Friday. With the mayor’s signing, Washington, DC becomes one of the first jurisdictions in the country with a binding, comprehensive law aimed at reducing greenhouse gas emissions. “It allows us to make significant improvements to the energy efficiency of existing buildings in the District,” Mayor Bowser said at the signing ceremony located at the American Geophysical Union (AGU) Building, which is slated to become the first net zero commercial retrofit in DC when it reopens later this year.

The new law has several sections which will impact the buildings in which DC residents and businesses live and work. In this post, we’re going to focus on Title III of the Clean Energy Omnibus Amendment Act, which is designed to make the city’s existing buildings more efficient.

Read more