New York City LL92 and LL94: Sustainable Rooftops

Image of solar panelsAs part of the Climate Mobilization Act, and in accordance with the its greater carbon emissions reduction goals, New York City passed Local Laws 92 and 94 in April 2019, mandating the installation of rooftop solar photovoltaic systems and/or green roofs on buildings across the city. The new requirements will go into effect on November 15, 2019 and will apply to all new buildings and any existing buildings completing a full roof deck or assembly replacement.

The Mayor’s Office estimates that the solar and green roof installations mandated by these bills will result in 300 MW of new solar capacity, 15 million gallons of new stormwater management capacity, 1 million tons of greenhouse gas reductions, and hundreds of green jobs. Based on these projections, this will account for close to 2.5% of the city’s overall emissions reduction goals.*

The laws require that solar and/or a green roof be installed on all available roof space. Areas deemed “not available” and excluded from the requirements include:

  • Areas obstructed by rooftop structures, mechanical equipment, towers, parapets, guardrails, solar thermal systems, cisterns, etc.;
  • Fire access pathways and zoning setbacks;
  • Recreational spaces that are recorded in the Certificate of Occupancy.

Read more

Zero(ish) – Waste Living

In a world where everything seems to be packaged in two layers of plastic, where we are encouraged to constantly discard items to make room for new ones, and where social media drives our desire to consume the newest trends, it can seem impossible to reduce our waste. Living a zero-waste lifestyle seems almost too overwhelming. I find myself wondering, “How can I possibly reduce waste when industries target consumers to do the opposite?” and “Even if I do make changes in my own habits, is it enough to make a difference?

I struggle with the same paralyzing vastness that Jonathan Chapman mentions throughout his book Emotionally Durable Design. Paralyzing vastness describes the tendency to do nothing when a task seems too large to conquer, instead of taking smaller steps. In the past, the seemingly vast nature of zero-waste living discouraged me from doing anything beyond entry-level recycling, but I realized that minimizing my waste is something worth tackling. Therefore, I will be sharing some ideas for working towards a zero(ish)-waste lifestyle — because going from zero to one hundred, or in this case one hundred to zero can be scary — and I’ll include my experience implementing a few of the ideas myself.

WEEK ONE: Apartment Composting

In blogs and articles that speak on behalf of zero-waste living, the importance of sharing with others and asking for help getting started is most frequently emphasized. For example, my apartment complex does not offer any composting services, but the SWA office does (yay sharing!). For week one, I started composting and designated two small resealable containers — one for food waste, and another for paper towels — that are now living on my kitchen counter. I intended on utilizing these two bins throughout the week, and then bringing them to the office for a dump. If you have the ability to start your own compost bin, that’s great too.

While using paper towels throughout the week, I felt less bad about it knowing that they wouldn’t be going into the landfill, but I developed some questions: If I use the paper towel with cleaning supplies, can it be composted?… Is it worth collecting small bits of food waste when I could just eviscerate them in the garbage disposal?… Are garbage disposals bad for the environment and/or do they affect the energy utilized for wastewater treatment?

Read more

Choosing Insulation for Carbon Value – Why More is Not Always Better Part 1

SWA’s Enclosure Group is acutely aware that insulation is the most important single material choice to maximize the enclosure’s thermal resistance over its operational life. Many of us in the building industry believe that, combined with a good continuous air seal, the highest insulation value makes the greenest enclosure, helping to reduce a structure’s carbon footprint and combat climate change. It may come as a surprise, then, that some of the most commonly used insulation materials are so carbon-heavy to manufacture and/or install, that for many decades they wipe away the carbon-energy savings they are supposed to provide.  The following is a detailed discussion of how and why this is, and what the industry is doing to change the equation.

Embodied vs. Operational Carbon

The built environment looms large in the climate picture, because almost 40% of the total carbon put into the planet’s atmosphere each year is attributed to buildings. Over the past 30 years of green building, we have overwhelmingly focused on operational carbon – the carbon that buildings emit as they are being used. Only recently have we begun to focus on embodied carbon – the carbon that goes into constructing buildings, which is typically far greater than the energy saved in the first decades of operation. Changes in energy codes are aimed at operational carbon, and even those organizations and standards that have been at the forefront of promoting sustainable building [LEED, PH] have not been quantifying or limiting embodied carbon, although they bring attention to it.

The Time Value of Carbon

Assuming that a building stands for many decades, or even centuries, its operational carbon will eclipse its embodied carbon over its lifetime, and therefore when the building’s carbon Life Cycle Assessment (LCA) is calculated, operational carbon savings will be more important than embodied carbon saved/spent in the long run. Why does embodied carbon deserve equal weight with operational carbon? Because of the total global carbon emissions from buildings, 28% is pegged to embodied carbon. That’s already a large percentage, but when you consider the near term, the first 30 years of a building’s life, the percentage jumps to about 50%. In effect, every new building is in carbon debt upon completion due to the huge amount of carbon emitted  in order to construct it., And in order for the climate to benefit from the energy savings provided by a well-insulated and sealed enclosure and a high efficiency energy system, the building needs to last and be used for a very long time. The problem is that we may not have 30 years, let alone 60, to pay off that carbon debt.

In the first 30 years of a building’s operational life, 50% of its total carbon emissions are still due to embodied carbon (Source: Architecture 2030)

Read more

Five Misconceptions about Fair Housing Act Design and Construction Compliance

From “If I comply with the building code, then I comply with the Fair Housing Act” to “Everything is adaptable, so it doesn’t need to work day one, right?” – our accessibility consultants have heard it all. Here are five of the most common misconceptions about the Fair Housing Act that we come across on a regular basis…

1.  Following the accessibility requirements of the building code will satisfy the design and construction requirements of the Fair Housing Act.

Not true. Following the accessibility requirements of the building code may not always satisfy the design and construction requirements of the Fair Housing Act. Building codes and federal laws are mutually exclusive; a building department or building official is responsible for ensuring compliance with the code – not the law. And, HUD is responsible for enforcement of the Fair Housing Act – not building codes. Meeting the requirements of one may not always satisfy the requirements of the other. There is only one code, i.e., the International Building Code (2000, 2003, and 2006 editions, with a few caveats) that are HUD-approved ‘safe harbors’ for compliance with the design and construction requirements of the Fair Housing Act. Later editions of the code are not approved by HUD as meeting the requirements of the FHA. And, any edition of the International Building Code adopted by a local jurisdiction and edited to fit the context of the local jurisdiction is not a safe harbor for compliance. The general rule of thumb is to apply the accessible design and construction requirements of the code and the law and comply with the most stringent provision.

2.  Meeting the design and construction requirements of the Fair Housing Act is not required at the time of design and construction. Because the Fair Housing Act permits adaptability, modifying a feature to accommodate a resident’s particular need is the best way to comply with the Fair Housing Act.

Not true. Meeting the design and construction requirements of the Fair Housing Act at the time of design and construction is required. To say that its permissible to meet the requirements by adapting features as needed and only upon request makes the design and construction requirements of the Act meaningless. Adaptability is permitted by the law, but only after the minimum design and construction requirements are met. And, what is permitted to be adapted post construction is included in the technical standards. For example, a forward or parallel approach is required to be provided at a kitchen sink in a dwelling unit. In order to accommodate the front approach, the base cabinet must be designed to be removable, i.e., adaptable. Adaptability in this case is contemplated by the requirements for usable kitchens. On the other hand, a light switch is required by the Fair Housing Act Accessibility Guidelines to be installed below 48 inches above the finished floor. The Act does not permit the light switch to be installed higher and modified as requested. To install a light switch higher than 48 inches above the finish floor is in violation of the design and construction requirements of the Fair Housing Act Accessibility Guidelines. Adaptability in this case is not contemplated or permitted by the requirements for usable kitchens.

Read more

Electric Cars: Are They Better for Your Pocket and the Climate Right NOW?

Last week, I read a blog post from Connecticut Fund for the Environment President Curt Johnson, and he reaffirmed what I already expected: my next car will likely be an electric vehicle (EV). I currently drive a Toyota Prius hybrid, but when I bought it in 2013, the price to purchase and to operate an EV did not work out, so I chose the Prius, which has very reliably achieved 50 mpg over the last six years.

As an engineer who admittedly knows nothing about cars, I feel like the information out there on EVs is either slightly biased (i.e., published by EV manufacturers) or not transparent enough with the math to convince me. So I set out to create a blog post that was unbiased and transparent. I liked this one from Tom Murphy, an associate professor of physics at the University of California, San Diego, so hopefully I’m making it a bit more user-friendly and applicable to your current/local situation.

I just wanted to know two simple things (and admit to ignoring a long list of other factors that influence the type of car most people will choose to drive):

Number 1: At what gas price is an EV cheaper to drive per mile?

Number 2: While EV tailpipe emissions are zero, is my local electric grid clean enough that it’s a good idea, right NOW? I know my next car will be electric, I just don’t know WHEN the grid will be clean enough that it’s better for the environment for me to switch.

When I began writing this article, I had no idea what the answers would be.

Read more