Buildings to Cool the Climate

The Intergovernmental Panel on Climate Change (IPCC), viewed as the most credible source of climate change research, issued an alarming report on October 2018 removing all doubt – absent aggressive action the atmosphere will warm up by as much as 2.7 ° F above preindustrial levels by 2040, inundating coastlines and intensifying droughts and poverty. The significance of this report is that the effects of climate change will occur in our lifetime.

The building construction sector has a critical role in drawing down carbon emissions by 2040. As nations all over the globe tackle operational emissions from buildings, we must now address our total emissions impact.

Estimated cumulative carbon emissions from new buildings 2020 to 2070

Life-cycle emissions resulting from buildings consist of two components: operational and embodied. A great deal of effort has been put into reducing the former as it is assumed to be higher than the latter. Studies have revealed the growing significance of embodied emissions in buildings, but its importance is often underestimated in energy efficiency decisions.

According to the Embodied Carbon Review 2018 by Bionova Inc, embodied carbon is the total impact of all the greenhouse gases emitted by the construction and materials of our built environment. Furthermore, during their life-cycle, the same products also cause carbon impacts when maintained, repaired, or disposed of.

Read more

Trends in Healthcare: Nurse Call Devices

“Trends in Healthcare” is a recurring series that focuses on exciting new designs and technologies we’re seeing in healthcare projects and provides best practices on how to ensure that these latest trends are accessible to persons with disabilities. We build on the wealth of knowledge we gain from working with healthcare design teams, construction crews, and practitioners to provide practical solutions for achieving accessible healthcare environments.


According to the U.S. Centers for Disease Control and Prevention (CDC), falls account for 3 million injuries treated in emergency rooms, 800,000 hospitalizations, and 28,000 deaths each year in the U.S. One in five falls cause serious injuries such as concussions/traumatic brain injuries and hip fractures. Not only is this a public health concern, it is extremely costly. According to the CDC, medical costs directly related to injuries resulting from falls totaled more than $50 billion in 2015.[1] Within hospitals and long-term care facilities, effective implementation of interventions and design strategies to reduce patient falls are key to increased patient safety and decreased medical costs. However, it may not be possible to eliminate patient falls altogether, so features like a properly installed nurse call system can be life changing.[2]

Accessible Nurse Call Stations

Most state and local standards and regulations require nurse call devices in each public toilet room and within inpatient bath, toilet, and shower rooms.[3,4] Where provided in spaces required to be accessible, the nurse call device must also be accessible. An accessible nurse call device is one that meets the following requirements:

  • All operable parts, including call reset switches, are within accessible reach range (15-48″ AFF);
    • NOTE: Determining compliant mounting height requires coordinating with the location of operable parts on the specific model used.
  • Operable parts do not require tight grasping, pinching, or twisting of the wrist to operate; and
  • Operable parts can be activated with no more than 5 pounds of force.

The location of operable parts differs between models of nurse call devices. It is important to determine mounting location based on the specific model of device being used.
Models shown (clockwise, L to R): Intercall Emergency Stations; Becas BeSmart Nurse Call System; Cornell Visual Nurse Call System

While these criteria appear straightforward, proper placement of nurse calls can become complicated when coordinated with minimum grab bar clearances and additional requirements under FGI, NFPA 99, NFPA 70, Ul 1069, UL 2560, and other local codes.

Read more

Benefits of Water Metering and Water Monitoring

Water monitoring can quickly become a building owner’s best friend. The high cost of water bills can often overshadow the cost of fuel and electricity bills, but ownership and management often believe that the price of their water bill is simply something to deal with. Many building owners pay the water bill for the entire building directly to their local utility without being aware of what’s going on inside their building or what they’re actually paying for. After all, without water monitoring, how would they know?

Water monitoring can impact an owner’s bottom line due to the high costs of leaks, which are more pervasive than you’d think.

Types of Leaks

Image of toilet with components labeled

Source: http://michaelhannan.co/wp-content/uploads/2018/08/diagram-of-digestive-system-in-hindi-toilet-bowl-parts-tank-repair.jpg

While any water fixture can contribute to leaks and high water bills, toilets are typically the worst offenders. In toilets, rubber flappers can wear out, a flapper connected to the flush handle can have an incorrectly sized chain interfering with the seal, float mechanisms on the flush valve can be set too high causing the water level to go just above the overflow tube, or there can be tenant tampering.

Showers and sinks can also start leaking at any time. While typically at much lower capacities, these leaks can actually be easier to detect. By monitoring the water consumption in a building and observing hourly usage overnight, you can identify patterns that can quickly indicate a leak, eliminating the need to visually inspect all water fixtures in a building to determine the cause.

Cost of Leaks

The idea that a single leak can last for an entire year may seem unreasonable, though the sad truth is many leaks can go undetected and/or unreported. To put water leaks into perspective, the chart below from the NYC DEP details the potential extent of leaks and their costs on a daily and yearly basis:

Read more

Establishing Moisture Control in Multifamily Buildings

Most of us are familiar with the feeling of a humid apartment after taking a hot shower. Some of us kick on an exhaust fan, perhaps un-fog the bathroom mirror, or even open a window to get the moisture out. Domestic moisture generation—moisture from human activity—is a major factor driving the humidity levels in our residential buildings, especially in super air-tight, Passive House construction. Before diving into just how much of an impact domestic moisture has in our buildings, let’s first look at average daily moisture generation rates of a typical family of three[1]:

  • breathing and transpiration—6 to 9 pounds of water vapor/day;
  • 10-minute shower in the morning for each individual—3.6 pounds of water vapor;
  • cooking fried eggs and bacon for breakfast—0.5 pounds of water vapor;
  • cooking steamed vegetables with pasta for dinner—0.5 to 1.0 pounds of water vapor; and
  • one small dog and a few plants around the house—0.5 pounds of water vapor/day

This brings the daily total to 11.1 to 14.6 pounds of moisture generation per day, or about 1.5 gallons of liquid water.

Where does all of this moisture go? In a typical code-level apartment building with moderate to high-levels of air leakage, water vapor has two year-round exit pathways: exfiltration through the façade and dedicated kitchen or bathroom mechanical exhaust. Additionally, in the summer, moisture is removed via condensate from the cooling system.

Let’s now put this in the context of a highly energy-efficient apartment with very low levels of air leakage (about 5 to 10 times less than the code-compliant unit), and balanced ventilation with energy recovery. The first means of moisture removal, façade exfiltration, is virtually non-existent given the building’s superior air-tight design. Next is mechanical exhaust ventilation in the kitchens and bathrooms. Because the unit has balanced ventilation and energy recovery, the exhaust air stream in a Passive House project typically passes through the energy recovery core. Depending on the core selection, a large percentage of the interior moisture may be retained in the apartment air despite the constant mechanical air exchange.

There are two basic types of cores:

  • Heat recovery ventilator (HRV) in which a certain percentage of sensible heat is recovered (transferred from the exhaust air stream to the supply air stream) while no moisture is recovered.
  • Energy recovery ventilator (ERV) in which a certain percentage of sensible heat and a certain percentage of moisture in the air is recovered.

To fully understand this issue, Figure 1 breaks break down the moisture-related pros and cons of ERVs and HRVs in the context of a high-density, Passive House building.

  ERV HRV
Pros Summer – prevents high exterior air moisture load from being supplied to interior air; cooling loads are minimized Winter – flushes high internal moisture load out of building; humidity levels reduced
Cons Winter – if internal moisture generation is high, interior moisture load is not flushed out of apartment; humidity levels increase Summer – allows exterior air moisture load to be supplied to interior air: cooling loads increase

Figure 1. Moisture related pros and cons with ERVs and HRVs in high efficiency, airtight construction

 

Traditionally, the key factor in deciding between an ERV or HRV for a high-efficiency building has been the project’s climate. However, as internal moisture loads begin to exceed exterior moisture loads in high-density projects, the decision between ERV or HRV must be looked at more closely for each project regardless of climate.

Read more

ERV + AHU?

Everyone pretty much gets that continuous (or very frequent) ventilation is necessary in high-performance homes. And – at least in theory – most people get why balanced, heat recovery ventilation is better (than unbalanced and/or without heat recovery). But the devil’s in the details.

A couple years ago we started an R&D project with funding from DOE’s Building America program, and one of the first steps was interviewing several developers about ventilation (single- and multi-family residential, mostly on the East Coast). For none of these developers were HRVs or ERVs standard.[i] They all had some experience with ERVs, however, and when asked about these experiences the word “nightmare” came up shockingly often.

The ERVs on the market now can certainly work well in the right application, but we see problems more often than not. One of the biggest challenges is trying to add ERVs on to central heating/cooling systems in homes. Most ERVs aren’t really designed for this, and here’s what we see:

  • Ducts connected to the wrong places! Outlet and inlet ducts get reversed, or the supply air from the AHU getting exhausted (sad how often this happens).
  • ERVs are attached to supply and/or return trunks of the AHU. Unless the AHU fan is running constantly (or whenever the ERV is turned on), outdoor air comes into the AHU and is sucked right back out the ERV exhaust.
  • If the AHU fan is turned on, the relatively small fans in the ERV can’t successfully compete with the big AHU fan. People don’t get the ventilation flow rates they want and/or the flows are very unbalanced.
  • AHU fans can use A LOT of electricity. Hundreds of Watts is common – I’ve measured over 1 kW (though this is changing – more below).

Even if installers follow manufacturer instructions for attaching ERVs to AHUs, they could still end up with low flows, unbalanced flows, or high electricity consumption. Through this DOE R&D effort, we’re trying to do better.
Read more