MENU

Party Walls

Posts by Steven Winter Associates

NYC Building Energy Letter Grades: What Property Managers Need to Know

Building energy efficiency labels are now available for property owners of large NYC buildings to download and post in their lobbies. Each year, the labels will be available on October 1st and must be posted by October 31st. Failure to display the label for applicable buildings by the October 31st deadline will result in a violation from the Department of Buildings and fine of $1,250.

(more…)

Integrating Social Equity into Green Building – Part 2: Pre-Design Phase

*Click here to read Part 1 of this blog!

The social and environmental context can vary greatly from one project to the next. To achieve social equity goals, a well-constructed plan for all project phases must be created and tracked. And, although the measures are not generally complicated, they can be numerous. In order to promote social equity, SWA has compiled this series of blog posts that teams can refer to as a guide to help facilitate the process. The goal is to help project teams understand, identify, and incorporate social and environmental goals and strategies into projects in a holistic and integrated way.

 

Image depicting equity vs equality

Image 1: – Credit: https://www.usgbc.org/resources/leed-project-team-checklist-social-impact

The following outline provides an overview of steps the design team can take in evaluating projects during Pre-Design. Throughout, references to LEED credits are cited.

(more…)

Integrating Social Equity into Green Building – Part 1: “Just Sustainability”

The causes of social inequity and injustice are deeply rooted within the systems that shape our society, including the built environment. The built environment represents the literal foundation of our society’s presence in the world – from the smallest rural community to the largest city. The way in which buildings are designed, constructed, and maintained has a tremendous influence on the equity (or inequity), and the justice (or injustice), of our society. The way we build and the strategies we employ can either continue to worsen social issues or can lay the groundwork for significant progress to be made on these issues in places around the world.

The building industry continues to make progress on reducing negative environmental impacts of the built environment. In fact, we’re increasingly seeing practices and strategies go beyond “sustainable” to “regenerative,” with such goals as net-positive energy, water, and waste. Now, the industry is reckoning with the urgent need to integrate social equity into its definition of sustainability in order to also reduce negative social impacts of the built environment. We might accelerate the process by framing the goal as “net-positive equity.” (more…)

Electrifying Central Ventilation Systems in Multifamily Buildings

A common strategy to provide ventilation in multifamily buildings is to design a central roof-top air handler that distributes outdoor air to each unit. The energy cost for this system, which commonly uses natural gas for heating for either a gas furnace unit or hot water from a central boiler is paid for by the building owner. However, there is another option – VRF[1]. With the unprecedented rise of VRF technology in the last decade combined with regulations such as New York City’s Local Law 97 of 2019[2] (carbon emission penalty), the industry is taking a giant leap towards building electrification. There are always questions and concerns raised against building electrification ranging from initial cost to operating cost to reliability of the VRF technology. From the owner’s perspective, the biggest question is usually surrounding the operating cost of an electric system compared to a natural gas system for heating, but the cost of ownership must consider multiple energy metrics. I was curious to understand the impact on various building energy profile metrics associated with a Dedicated Outdoor Air System (DOAS) using the conventional gas fuel source vs. the latest VRF heat pump technology using electricity in a multifamily building. The findings of this investigation challenge the deep-rooted notion that electricity, being more expensive than natural gas per BTU, will always cost more to operate.

(more…)

Pirelli Historic Retrofit: Part 1

 

image of Pirelli buildingOne of the most important drivers in achieving Passive House certification (or achieving any goal!) is getting the project team involved from the start. Becker + Becker, the owner, architect and developer for the creative retrofit of the Pirelli Building, hired SWA’s Passive House, LEED, Enclosures, and Accessibility teams to coordinate during early design. Becker +Becker is invested in rebuilding for resilience, sustainability, and occupant health and comfort and appreciates the necessity of getting goals defined at the outset.

(more…)

AeroBarrier: A New Tool for Gut Rehabs?

Image of AeroBarrier eventAeroBarrier is touted as the best route to never fail another blower door test. The technology, which involves pressurizing a space with a blower door fan while misting a water-based glue into the air from multiple points throughout the space, is most often being used on new multifamily buildings after drywall is installed. SWA first experimented with the technique on the Cornell Tech high-rise building. Back in March, I reached out to Yudah Schwartz at SuperSeal Insulation, Inc. about a personal project, the gut rehab of a 2,500 SF detached single family home. While renovations aren’t something they normally do, Yudah and his team agreed to try a demo. Here’s what happened.

(more…)

The Numbers Are In! NYC Passive House Performance Data

In a collaborative effort that merged financing and energy use analysis, the New York City Passive House industry finally has performance data. Working together with Bright Power, The Community Preservation Corporation, and NYC Department of Housing Preservation & Development, this analysis is the first of its kind.

Why does this matter?

Energy Use Intensity (EUI) measures energy consumption on a per square foot basis to compare buildings and allows interested parties to gauge one building’s usage to another (or to a group of buildings with a similar use type). The study team compared the actual EUI of six completed Passive House-certified and Passive House-like buildings against recently completed multifamily code-built buildings. Information was gleaned from the EnergyScoreCards database and the Passive House (PH) target. The weather normalized data indicates the Passive House and Passive House-like buildings are performing much better than the comparable code-built group, but are not quite as efficient as the Passive House threshold. Industry leaders have recognized this performance gap – between predictive assumptions that rely on standardized patterns of use and the real-life habits of actual people living in the building. This gap has been a hot topic  at the past several New York Passive House conferences. The results from the current analysis provide a starting point now, so the industry can focus on strategies to continue to reduce EUIs.

(more…)

Leveraging LEED for New Construction Post-COVID Part 2

LEED: Toolkit for a Healthy and Resilient Post-COVID Built Environment

At SWA, we have used LEED across a wide range of projects and contexts. We have seen firsthand its strength as an adaptable toolkit for guiding high performance building design, construction, and operation. The intent of each LEED credit category takes on a particular meaning, both locally and globally, in response to the emergence of such factors as global climate change and its associated consequences—including pandemics. In the post-COVID context, these intents will take on new meaning and new urgency. Read Part 1 of this blog here!

image of coal plant

Credit: Arnold Paul

The overall goal of the LEED rating system is to reduce the negative impacts of the built environment on environmental and human health. Ideally, this focus contributes to our general, overall resilience to public health crises such as the COVID-19 pandemic by reducing and mitigating various factors that make us more vulnerable to diseases. For example, we know that long-term exposure to air pollution and poor air quality dramatically increases the chances of dying from COVID-19 and that most of the same pre-existing conditions that increase the risk of death for COVID-19 are the same diseases exacerbated by exposure to air pollution. Anything we can do to improve air quality will also improve our resilience to disease. Most significantly, we need to move away from fossil fuel-based energy and toward clean, renewable energy—and a large portion of LEED is focused on doing just that.

As researchers have noted, many of the root causes behind climate change also contribute to a greater risk of pandemics. An example is deforestation and associated habitat loss, which forces wildlife to migrate, bringing novel viruses into closer contact with livestock and humans, and increasing the odds of disease transmission. On top of that, by altering temperature and rainfall patterns, climate change has created conditions that are more conducive to the spread of disease in general. So, the strategies we need to enact now to address the climate crisis—many of which are addressed in LEED credits—can also mitigate the occurrence, scale, and impacts of future disease outbreaks.

(more…)

Leveraging LEED for New Construction Post-COVID Part 1

In the post-COVID world, there needs to be a greater awareness that the built environment can protect and promote human and environmental health. Buildings can, and must, play a critical role in delivering a stronger, more resilient public health infrastructure that can help prevent and mitigate crises such as the SARS-CoV-2 pandemic. The good news is that we already have effective tools for designing, constructing, and operating such buildings—chief among them LEED and the WELL Building Standard.

We believe people are now more conscious of how the built environment affects their health. As a result, we’re likely to see an increase in investment in sustainable building design, construction, and operation and a corresponding increase in demand for green building rating systems such as LEED and WELL. We may also see the green and healthy building concepts that are included in these systems increasingly integrated into building codes.

USGBC plaque

[Credit: Blanchethouse (username) / Source: https://commons.wikimedia.org]

Certification programs (e.g., LEED and WELL) have been developed though collective effort. They are extremely effective and adaptable tools that project teams can use to ensure that their buildings achieve the best possible performance in terms of protecting environmental and human health. Importantly, these programs continue to evolve, offering ever more effective strategies for improving the built environment, ensuring that buildings adapt to whatever circumstances may arise in uncertain times. But right now, project teams can make immediate use of LEED and WELL, and similar tools, to start preparing for the new reality ushered in by the COVID-19 pandemic.

How can project teams leverage LEED now? In this series, we’ve highlighted the LEED credits that can be used to guide efforts to make our buildings safe, healthy, and resilient. (In a follow-up series we’ll discuss the WELL features that can be used to guide our post-COVID building work.)

(more…)

Interesting Elements: A Modeling View on Net Zero Homes

I recently performed some net zero energy modeling on a single-family home for work. Around the same time, I got to chatting with my neighbor (mindful of social distancing) and when I mentioned net zero,  he said, “Is that even possible?” AH! Get the word out. We have the means to offset our home energy use. What follows are the basics to consider when trying to fully offset home energy along with a breakdown of how different upgrades can affect energy use.

There are lots of resources available on how to reduce home energy use. You can look at program requirements and guidelines like the Zero Energy Ready Program or Passive House. Through modeling I will demonstrate how the energy use numbers change and describe what we have seen in real-world examples of net zero homes. Net zero is not new and we’ll be looking at some specific pieces of single family home modeling.

(more…)