MENU

It’s Time to 86 Fossil Fuels in Commercial Kitchens with Chris Galarza

Imagine this: you’re a chef or cook in a high-stress commercial kitchen setting. You’re making split second decisions with little breathing room, and each quick decision can get you cut or burned. On top of that, you’re in over 100-degree heat, breathing in toxic air from your gas stovetop.

This is an experience Chris Galarza could relate to, from working as a professional chef in various commercial settings. After making the switch to an all-electric kitchen utilizing induction equipment at Chatham University’s Eden Hall campus (the World’s first fully self-sustained university campus), he witnessed the positive difference in the physical and mental health of himself and his staff. He now advocates for electric cooking being a much healthier, safer, cost-effective, and energy efficient option.

In this episode, Kelly and Chris talk through some electric-kitchen-myth-busting, and ultimately answer the question “is moving away from gas and fire in the kitchen really that radical an idea or does it just make perfect sense?”

(more…)

Finding Your Way: Third-Party Assurances for Your Properties

Over the last several months, experts in sustainable design related to human health and interior wellness have developed guidelines, protocols, and toolkits to adapt existing buildings to the ‘new normal’ caused by the COVID-19 pandemic. These tools can be leveraged by building owners and property managers to enhance their healthy building strategies, ensuring their properties are mitigating risk with building wellness and safe building protocols. And, once implemented, building teams can earn recognition for their hard work with industry recognized organizations, which will build confidence for tenants and employees.

We’ll be highlighting three programs that complement your ESG and/or wellness goals across any portfolio or building typology. All three were created to be scalable, flexible, easily implemented, and cost-effective. Let’s get started.

(more…)

The Great Indoors: Creating a Healthier and Safer Built Environment

Image of elderly couple sitting on a bench laughingAs humans, we spend a lot of time indoors. Studies by the U.S. Environmental Protection Agency indicate that under normal circumstances the average American spends over 90% of their life indoors. With the spread of COVID-19 and widespread voluntary and involuntary quarantine, the rise of work from home policies and new direction to social distance has resulted in a further increase to the amount of time we spend indoors. Now more than ever, people are cognizant of the air they’re breathing and the surfaces they’re touching. The buildings that we live, work and play in impact our physical and mental health. With certain building and design considerations, we can make these impacts beneficial.

We recruited some experts at SWA to fill us in on the various considerations when it comes to the health and comfort of a building, as well as some certifications that assure these considerations are met.

(more…)

It’s Time to Focus on Our Schools

If you are a parent like me, I am sure you cherish your kids and seek to offer them the best opportunities in life. I even moved to a different school district. And, while the education is top-notch in my town, I have come to realize that it really doesn’t matter what school district you are in…all our schools need help. I am not talking about smaller class sizes, better pay for teachers, after-school programs, and more school supplies, although those are important. School buildings need attention. With budgetary pressures, a lot of maintenance and repairs are being deferred and schools are not aging well. Whether it is repairing existing systems, replacing systems at the end of their useful life, renovating, or building a brand-new school to service your community for future generations, advocate for your Board of Education (BoE) to think holistically about improving the conditions for our children.

Why My Call to Action?

This year I was asked to join our elementary school’s Tools for Schools committee, which is tasked with implementing an indoor air quality (IAQ) management plan. This experience gave me an opportunity to get involved and provided me insight into the school’s systems and the operations and maintenance (O&M) processes that were in place.

Unfortunately, at the start of the 2018 school year, mold issues were identified in our local middle school and the building was closed. In fairness, I quickly realized that buildings were outside the BoE members’ knowledge base. Afterall, they are educators, not facility managers or building scientists. They sought outside consultants but didn’t know the right questions to ask. After some time, the BoE decided to get input from local experts in the community. Fortunately, we have several experts (including me) who were willing to volunteer their time. As part of a task force, we laid out a strategy to remediate the mold issues in the school and to implement short- and long-term repairs to minimize/eliminate water incursion and elevated moisture issues within the building.

I am not saying you must get involved at this level, but I do encourage you to attend a BoE meeting and start asking questions related to IAQ. Ask if the school has deferred maintenance needs and if/when these are being addressed in the annual budget. Ask when (if) comprehensive physical needs assessments and energy audits were performed on all school buildings. Educate yourselves; then help educate your BoE and your community on IAQ guidelines for schools. Here are some great resources:

How Can SWA Help?

In working with schools, I have learned that one of the greatest challenges school decision-makers face is not knowing where to turn for support and guidance. Steven Winter Associates, Inc. (SWA) has been working to improve educational facilities for decades. Whether you have questions related to mold, moisture, comfort, absenteeism, accessibility, high utility bills…on up to zero energy design and progressive learning environments, SWA can support you. Here is just a sample of past school projects that SWA has worked on:

(more…)

Rapidly Changing Brooklyn Neighborhood Welcomes Affordable and Sustainable Housing Development

image of Livonia Apartments

Courtesy of MAP Architects

The Livonia Apartments is Phase II of an affordable sustainable housing development in the rapidly changing neighborhood of East New York, Brooklyn. Through a partnership with the NYC Department of Housing Preservation and Development (HPD) and the New York City Housing Development Corporation (HDC) and designed by Magnusson Architecture and Planning (MAP), BRP Companies and partners developed this mixed-use, four-building complex to provide 292 apartments of both affordable and supportive housing, including 10% of units specified for persons with disabilities and municipal employees. In addition, Livonia II provides 30,000 square feet of community and retail space for the neighborhood.

The size and density of The Livonia Apartments project represented an opportunity to set a higher benchmark in green design strategies. Mayor Bill di Blasio stated at the groundbreaking, “For decades these vacant lots have been a blight on this neighborhood. Today, we’re breaking ground on a project that will deliver the affordable housing, good local jobs and vital services this community needs. We believe in a city where every neighborhood rises together, and where we make investments that give more people a shot at a better life.” Although the development straddles the busy elevated L & 3 trains and the Livonia Ave. station, the buildings’ facades are angled to minimize the sound and rattle from the trains, while maximizing privacy and natural light.

(more…)

Establishing Moisture Control in Multifamily Buildings

Most of us are familiar with the feeling of a humid apartment after taking a hot shower. Some of us kick on an exhaust fan, perhaps un-fog the bathroom mirror, or even open a window to get the moisture out. Domestic moisture generation—moisture from human activity—is a major factor driving the humidity levels in our residential buildings, especially in super air-tight, Passive House construction. Before diving into just how much of an impact domestic moisture has in our buildings, let’s first look at average daily moisture generation rates of a typical family of three[1]:

  • breathing and transpiration—6 to 9 pounds of water vapor/day;
  • 10-minute shower in the morning for each individual—3.6 pounds of water vapor;
  • cooking fried eggs and bacon for breakfast—0.5 pounds of water vapor;
  • cooking steamed vegetables with pasta for dinner—0.5 to 1.0 pounds of water vapor; and
  • one small dog and a few plants around the house—0.5 pounds of water vapor/day

This brings the daily total to 11.1 to 14.6 pounds of moisture generation per day, or about 1.5 gallons of liquid water.

Where does all of this moisture go? In a typical code-level apartment building with moderate to high-levels of air leakage, water vapor has two year-round exit pathways: exfiltration through the façade and dedicated kitchen or bathroom mechanical exhaust. Additionally, in the summer, moisture is removed via condensate from the cooling system.

Let’s now put this in the context of a highly energy-efficient apartment with very low levels of air leakage (about 5 to 10 times less than the code-compliant unit), and balanced ventilation with energy recovery. The first means of moisture removal, façade exfiltration, is virtually non-existent given the building’s superior air-tight design. Next is mechanical exhaust ventilation in the kitchens and bathrooms. Because the unit has balanced ventilation and energy recovery, the exhaust air stream in a Passive House project typically passes through the energy recovery core. Depending on the core selection, a large percentage of the interior moisture may be retained in the apartment air despite the constant mechanical air exchange.

There are two basic types of cores:

  • Heat recovery ventilator (HRV) in which a certain percentage of sensible heat is recovered (transferred from the exhaust air stream to the supply air stream) while no moisture is recovered.
  • Energy recovery ventilator (ERV) in which a certain percentage of sensible heat and a certain percentage of moisture in the air is recovered.

To fully understand this issue, Figure 1 breaks break down the moisture-related pros and cons of ERVs and HRVs in the context of a high-density, Passive House building.

  ERV HRV
Pros Summer – prevents high exterior air moisture load from being supplied to interior air; cooling loads are minimized Winter – flushes high internal moisture load out of building; humidity levels reduced
Cons Winter – if internal moisture generation is high, interior moisture load is not flushed out of apartment; humidity levels increase Summer – allows exterior air moisture load to be supplied to interior air: cooling loads increase

Figure 1. Moisture related pros and cons with ERVs and HRVs in high efficiency, airtight construction

 

Traditionally, the key factor in deciding between an ERV or HRV for a high-efficiency building has been the project’s climate. However, as internal moisture loads begin to exceed exterior moisture loads in high-density projects, the decision between ERV or HRV must be looked at more closely for each project regardless of climate.

(more…)

Does Your Exhaust Fan Suck? Part 2

If you recall from Part 1 of this article written back in September, we discussed why exhaust fans often don’t operate as they are intended. Now, let’s discuss how to rectify these issues. First, we need to understand that all fans are not created equal. To do this, SWA participated in a “blind” study that analyzed a number of today’s common exhaust fans. The study emphasizes the importance of fan selection. With this understanding, we will then discuss solutions and best practices for installing bathroom exhaust ventilation.

The “Blind” Study

To get a comprehensive performance dataset for a number of exhaust fans, the Riverside Energy Efficiency Laboratory (REEL) was engaged for a “blind” study. REEL is the HVI/ESTAR neutral, third-party testing facility. In total, 7 multi-speed fans, 7 single speed fans, and 6 low-profile fans from six manufacturers were sent to REEL without manufacturer markings. In general, ten-point airflow tests were conducted on each fan. Testing adhered to standards used in the industry, namely, ANSI/AMCA Standard 210 and HVI Publications 916 and 920, where applicable. While the dataset is extensive, this paper focuses on the 50, 80, and 110 cfm ventilation rates, as these are the most common specified fan speeds for bathrooms. These fan curves show the relationship of airflow that will be delivered at various static pressures of the duct system.

Figure 1 shows fan curves for single speed fans that were tested. The units are rated for 80 cfm unless noted otherwise in the legend (two are rated for 70 cfm and one for 90 cfm). While all of these fans performed in a similar manner, would it surprise you that two of the fan curves in Figure 1 are for exhaust fans that use DC motors? People often assume that all fans using DC motors are the same and result in constant airflow for a range of static pressures (let’s say up to 0.4” w.g.).

Figure 1

Figure 1. Performance Data for Single Speed Exhaust Fans

It is clear in this data (Figure 1) that flow rates decrease rapidly when static pressure rises over 0.3” w.g., as it often does in real world installations. Oh, are you still wondering which two fans have DC motors? It is actually SS-05 and SS-06. A bit surprising, isn’t it?

(more…)

Here’s to Our Buildings, Our Health! SWA’s Top 10 Tips for a Healthier Indoor Environment – Part 2

Quick pulse survey: in the last three months, since we published our Part I blog on tips for healthier indoor environments, how many of you have either incorporated some of our healthy recommendations into your home, or informed your clients on the most effective ways to address health risks in buildings (hint: if you need a refresher, please visit Part I)?

As previously discussed, there is overwhelming evidence for the business case for healthier buildings, from greater employee productivity and reduced sick days in the workplace to reduced asthma incidents and ER visits for children living in green housing. Leading organizations know that improved wellbeing helps employees to be healthier and lowers healthcare costs. It also helps employees to be more productive, creative and innovative, and less likely to leave for a competitor. The same concept can be applied to tenants in rental buildings and condos.

Before we dive into health tips #6-10, here are some fun (and not so fun) facts to keep in mind while we spend winter days INSIDE our workplaces, schools and homes:

  • USGBC graphic with health statsIn the winter, school-aged children ages 11-17 will spend 60 minutes a day outdoors, compared to 175 minutes in the summer. (Source: Schools for Health by the Harvard TH Chan School of Public Health.)
  • In a study of 73 elementary schools in Florida, students in schools cooling with the noisiest types of HVAC systems were found to underperform on achievement tests compared with students taking tests in schools with quieter systems.
  • According to a recent survey released by the U.S. Green Building Council (USGBC), employees who work in LEED certified green buildings are happier, healthier and more productive than employees in conventional and non-LEED buildings:
    • More than 90 percent of respondents in LEED certified green buildings say they are satisfied on the job and 79 percent say they would choose a job in a LEED certified building over a non-LEED building.
    • More than 80 percent of respondents say that being productive on the job and having access to clean, high-quality indoor air contributes to their overall workplace happiness.
    • 85 percent of employees in LEED certified buildings also say their access to quality outdoor views and natural sunlight boosts their overall productivity and happiness, and 80 percent say the enhanced air quality improves their physical health and comfort.

(more…)

Does Your Exhaust Fan Suck? Part 1

You most likely don’t even think about it when using the bathroom. Flip the switch, hear the exhaust fan, and everything is working as it is intended…right? Far too often, the answer is NO, and it is no fault of the user. Sure, homeowners should take a minute each year to vacuum the inside of the exhaust fan housing, but otherwise, these fans should just work. So why don’t they? Hint…it all depends on how it was sized and installed.

Background

The purpose of exhaust ventilation is to remove contaminants (including moisture) that can compromise health, comfort, and durability. Exhaust fans are amongst the simplest mechanical systems in your home, but decades of experience working in homes has shown us that even the easiest things can get screwed up. Far too often, exhaust fans rated for 50 or 80 cubic feet per minute (cfm) of air removal are actually operating at less than 20 cfm. In theory, the exhaust fan should be installed in a suitable location and then ducted to the outside via the most direct path possible. However, the installation of an exhaust fan can involve up to three trades: an electrician typically installs and wires the unit; an HVAC contractor supplies the ductwork; and, the builder/sider/roofer may install the end cap termination. What could go wrong?

As energy efficiency standards and construction techniques have improved over time, new and retrofitted buildings have become more and more air-tight. If not properly addressed, this air-tightness can lead to moisture issues. Quickly removing moisture generated from showers is a key component of any moisture management strategy. While manufacturers have made significant advancements in the performance, durability, and controls of exhaust fans, these improvements can all be side-stepped by a poor installation.

So how do you correct this issue? (more…)

The Second Leading Cause of Lung Cancer May Not be What You Expect

National Public Health Week is this week and Today’s theme is “Environmental Health”, which includes protecting and maintaining a healthy indoor environment.

While National Radon Action Month was in January, we wanted to share how this specific indoor air pollutant can affect your health and what compelled a group of us here at SWA to get our homes tested (and remediated).

What is radon and why does it matter?

Map of EPA Radon Zones

EPA Map of Radon Zones

Radon gas is a naturally occurring byproduct of the radioactive decay of uranium found in some rock and soil. You can’t see, smell or taste radon, but it may be found in drinking water and indoor air. This carcinogenic gas is currently the second leading cause of lung cancer after smoking, according to the National Cancer Institute.

Although radon in drinking water is a concern, radon in soil under homes is the biggest source of radon, and presents the greatest risk to occupants. This pressure-driven mechanism occurs when radon escaping the soil encounters a negative pressure in the home relative to the soil. This pressure differential is caused by exhaust fans in kitchens, bathrooms and appliances, as well as rising warm air created by furnaces, ovens and stoves.

Radon levels can vary dramatically within a region, county, or city. However, the EPA recommends that all homes be tested, regardless of geographic location. To see what the average levels are in your area, check the EPA Radon Zones map.

What radon levels are accepted? Ideal?

(more…)