Posts

Electrify Everything? Part 2.

Heat Pump Water Heaters in Multifamily Buildings

In Electrify Everything? Part 1 that I wrote several months ago, I mentioned that integrated tank heat pump water heaters (HPWHs) can work well in single family homes — even in colder climates. For example, we see quite a few installed successfully in basements in the Northeast. These devices remove heat from the surrounding air, so there needs to be enough heat in the basement air for them to work effectively. During the winter, a home’s space heating system probably needs to work harder to make up for the HPWH. In the summer, the HPWH provides a bit of extra cooling and dehumidification. We put together some guidelines a few years ago on how to get the most from these systems in single family homes.

Image of heat pump

Some places where I’ve seen problems:

  •   Installing a HPWH in a basement closet. Even if a closet has louvered doors, there’s not enough heat/air for a HPWH to work well.
  • HPWHs are relatively loud. If there’s a finished part of the basement (e.g., bedroom or office), the noise can be disruptive.
  • Sometimes there is trivial heat gain to the basement (from outdoors, mechanical equipment, etc.). When a HPWH removes heat from the air, such a basement can quickly become too cold for the water heater to work efficiently (and too cold for comfort if someone uses the basement).

But overall, HPWHs in single family basements can work effectively.

Read more

Over Pressure (Part Two)

Welcome back! In Part One we talked about how steam pressure gets too much attention. Controlling pressure for its own sake should never be the end goal—steam pressure is just a means to an end. In this post we’ll discuss one way that controlling steam pressure can be useful—where it can help you balance the system, control the temperature, and yes, save energy.

Two-pipe Steam

The biggest issue plaguing two-pipe steam heating systems are steam traps. Steam traps are supposed to do just that—trap steam—keeping the pressurized steam on the supply side of the system and allowing air and water (i.e., condensate) to pass through into the returns. Keeping the supplies and returns separate is critical, but steam traps are too failure prone to accomplish this reliably.

Radiator steam “trap” failed open

Radiator steam “trap” failed open

At the start of any heating cycle, the system is full of air, which must be removed for steam to enter the heaters. In most two-pipe systems, the steam pushes the air out of the heaters, through the traps, and into the return piping where it eventually exits the system through a vent in a vacuum or condensate tank. That’s what happens when the traps are working. But a failed open trap is no trap at all. It lets the steam flow into the return piping and, with pressure on both the supply and return sides, air is trapped in the system. This affects those farthest from the boiler—the heaters near the ends of the mains and on the top floors—the most.  (And with air trapped inside keeping the metal cold, are they even heaters?)

Read more

Electrify Everything? Part 1

So in utility and policy circles, electrification is all the rage. Grid electricity is getting cleaner (i.e. resulting in lower CO2 emissions), on-site renewables are taking off (sometimes even with storage), and heat pump technologies are getting better. More regional and utility initiatives are encouraging building owners/designers/developers to forego onsite fossil fuels entirely (or at least mostly) to help meet CO2 emission reduction goals. But is electricity really more sustainable than natural gas? Is it cheaper? Which is better, really?

Read more