Shifting Perspectives: Experiencing Accessibility Challenges

Katie negotiating a curb ramp and crosswalk with the aid of a cane while wearing vision-altering goggles.

Written by Katie Chevalier, Accessibility Specialist

Last month, I had the opportunity to attend a training session entitled “Shifting Your Perspective: Experience and Plan for Accessibility Challenges,” which was hosted by the Dutchess County Planning Federation. The course syllabus was broken down into two components: experiential and site planning. The goal of the experiential portion of the course was to provide attendees with a variety of simulated sensory and ambulatory challenges and have them navigate the built environment. While the course was primarily geared toward local municipal planning boards, there were valuable lessons to take with me, both in my role as an Accessibility Specialist and as a county resident interested in learning first-hand the challenges that people with disabilities face every day.

Read more

Technically Speaking: Not All Insulation is Graded Equally

About a year ago, I worked along with other HERS raters and the North American Insulation Manufacturers Association (NAIMA, a.k.a. Insulation Institute) to conduct a study on the importance of insulation installation quality and grading.

RESNET, the nation’s leading home energy efficiency network and the governing body of the Home Energy Rating System (HERS® Index) established standards for grading insulation installation.

The grading is as follows:

Grade I— the best and nearly perfect install which includes almost no gaps or compression… what some would call “G.O.A.T.”
Grade II—allows for up to 2% of missing insulation (gaps) and up to 10% compression over the insulation surface area… what some would call “mad decent”.
Grade III—insulation gaps exceed 2% and compression exceeds 10%… anything worse and the insulated surface area is considered un-insulated.

RESNET Insulation Diagram

Source: RESNET Mortgage Industry National HERS Standards

Read more

VRF Systems vs. Electrical Resistance Heaters – A Case Study

Variable refrigerant flow (VRF), also known as variable refrigerant volume, was a concept developed by Daikin Industries in the 1980s. The technology is based on transferring heat through refrigerant lines from an outdoor compressor to multiple indoor fan coil units. VRF systems vary the amount of refrigerant delivered to each indoor unit based on demand, typically through variable speed drives (VFDs) and electronic expansion valves (EEVs). This technology differs from conventional HVAC systems in which airflow is varied based on changes in the thermal load of the space.

The two main VRF systems are heat pump systems that deliver either heating or cooling, or heat recovery systems that can provide simultaneous heating and cooling. These two applications, plus the inverter-driven technology of the outdoor compressors, allow for greater design flexibility and energy savings. In applications where heating and cooling are simultaneously called for in different zones, VRF heat recovery systems allow heat rejected from spaces that are being cooled to be used in spaces where heating is desired. Read more

Tech Notes: Universal Design v. Accessible Design

“Isn’t Universal Design just a different term for Accessible Design?” We hear this from architects and designers a lot. While similarities exist, Accessible Design and Universal Design are actually quite different.

outlets, switches, env controls

This image depicts the prescriptive Accessible Design requirements for light switches and operable parts under the Fair Housing Act. Unlike Universal Design, Accessible Design is not intended to be flexible, with little or no room for tolerance.

The term “Accessible Design” typically refers to compliance with Federal accessibility laws and state and local building codes; including the Americans with Disabilities Act and the Fair Housing Act, among others. Accessible Design requirements are based on anthropometric research – or the study of the human body – and are intended to address people with disabilities. Laws and codes that require compliance with Accessible Design requirements include little or no room for tolerance.

Read more

#UnfreezePA: SWA at the Helm of the PA Icehouse Demonstration

On Tuesday, June 6, 2017, leaders of Pennsylvania’s clean energy movement took to the steps of the State Capitol Building. The cause? To demonstrate just how much room PA State Energy Codes have to improve. Amidst a cohort of speakers and presenters, USGBC’s Central Pennsylvania chapter erected two sheds, each filled with 1,080 pounds of ice: one built to 2009 Code requirements, currently in place under PA state law; and the other built to Passive House standards. Over the course of the month of June, the public will be able to watch as the respective blocks of ice melt within their structures. Ultimately, the difference in the rate of ice melt between the Code House and the Performance House (Passive House) will illustrate the degree to which current energy laws and codes are lacking, while simultaneously offering a model for advancement.

Code Icehouse 3pm 6/14

Performance Icehouse 6/14

In 2009, the International Energy Code Council (IECC) developed energy-saving standards that were adopted by most U.S. state governments. While the 2009 Code was widely instituted in the period following its publication, several states have since embraced even more efficient requirements that are quickly replacing outdated terms. For instance, the state of Maryland – comparable to Pennsylvania in terms of climate, population, and demographic spectrum – is operating under requirements equivalent to 2015 IECC standards.  New York, New Jersey, Massachusetts and Vermont are other states in the same geographic region and general climate zone that have opted towards more energy efficient codes.[1]

Passive House, on the other hand, is a set of design principles that aim to attain a “quantifiable and rigorous level of energy efficiency within a specific quantifiable comfort level.[2]” More simply, Passive House projects go above and beyond the statutes of any enforced codes to follow a “maximize your gains, minimize your losses” approach to building design. The Passive House Institute of the United States (PHIUS) provides the following summary of Passive House principles: Read more