Designing Solar for High Density Areas

Hear the term “solar energy” and you’re likely to think of vast fields of glistening panels and hillsides transformed into disco balls. Hear the term “solar energy” and you might picture suburban McMansions with roofs that reflect the sky. Hear the term “solar energy” and you envision… skyscrapers? Affordable housing units? Clusters of panels lurking in the crevices of a city skyline?

By 2050, solar energy is projected to be the world’s largest source of electricity, and it would hardly be reasonable to do so by means of blanketing entire stretches of usable or natural lands with sheets of silicon. Instead, part of the solution lies in designing solar for high density areas, which is quickly becoming the backbone of the solar boom, providing access to, and availability of, solar energy in densely populated areas.

Read more

Nanogrids: A Whole Building Approach to Distributed Energy Resources

Distributed Energy Resources
Distributed Energy Resources (DERs) are a growing part of the energy landscape in the United States, and they are becoming an ever more attractive opportunity for households, companies, and building owners to gain control of their own energy needs. By 2024, it is estimated that solar PV plus energy storage will represent a $14 billion industry [1]. These resources are installed on the customer side of the utility meter and include distributed generation, such as combined heat and power (CHP) and solar photovoltaics (PV); energy storage assets, such as batteries; energy efficiency and demand management; and building energy management software. When deployed correctly, DERs have the potential to reduce the carbon footprint of the electric grid, increase grid reliability and resiliency, and defer the need for costly upgrades to grid distribution and transmission infrastructure [3,4,7]. Read more

Solar Photovoltaics and New York Energy Code

Industry Trends

Over the past decade, the story of solar photovoltaic (PV) power has been one of both accelerating deployment and consistent, significant reductions in cost. This success has been driven by increasingly advantageous economies of scale, and supported by incentives and initiatives at all levels of government.

Figure 1. Solar PV systems have seen a dramatic reduction in cost

In late 2015, the federal Investment Tax Credit [3], a primary financial incentive for solar PV systems, was extended at its current rate of 30% through 2019, despite a contentious environment in Washington. It is scheduled to be stepped down through 2022, after which the commercial credit will expire and the residential credit [7] will remain at 10% indefinitely.

The National Renewable Energy Laboratory’s annual solar benchmarking report [4] shows that over the past seven years, PV system costs have dropped 58.5% in the residential sector, 59.3% in the commercial sector, and 68.2% in the utility-scale sector. As a clear sign of the times, utility-scale solar achieved the U.S. Department of Energy (DOE) SunShot Initiative’s goal of $1.00/W early this year, three years ahead of schedule [9]. According to the U.S. Energy Information Agency (EIA) [8], these trends should continue, leading to solar power’s increasing presence as a key component of the national electrical generation mix. The EIA projects solar to be the fastest growing form of renewable energy, increasing by 44% by the end of 2018 for a total deployed capacity of 31 GW and accounting for 1.4% of utility-scale electricity generation.

Read more

Five Year Solar Performance on Connecticut Home

Written by Gayathri Vijayakumar, VP – Senior Building Systems Engineer

Over the last 10 years, we’ve seen great strides in the solar PV market in the United States. Between the federal tax credit and utility-sponsored incentives, the price to install PV systems came within reach of many homeowners. For others, eager to make a positive impact on the environment, power purchase agreements with solar companies and no up-front costs made it possible to utilize their roofs to generate electricity.

While the calculated cost-effectiveness of solar panels relies on the future price of electricity (which we can’t predict), we can confirm that they do deliver energy. In a very scientific study of exactly one home, owned by a SWA engineer, five years of generation data is available. Sure, it’s not the pretty Tesla roof, but these panels were installed back in November 2011. At 4.14 kW, with no shading and great Southern exposure, the panels were estimated to generate 5,400 kWh/year of electricity in New Haven, Connecticut (Climate Zone 5). The panels have exceeded expectations, generating on average, 6,200 kWh/year, which is roughly 70-80% of the electricity required by the 2,500 ft2 gas-heated home and its 4 occupants.

Read more

Game Changers in Building Science

Thank you to everyone who stopped by our booth last week at Greenbuild 2015 in Washington, D.C.! By all accounts, this year’s event was a great success. In case you missed it, our fearless leader, Steven Winter, spoke at the GAF booth on Wednesday. As an architect who has been practicing building science for the past 50 years, he shared insights about some building science innovations that he thinks have been “game changers” and have intrigued him: they are changing the way we design, build and operate buildings.


Here are the highlights:

Read more