MENU

Party Walls

The Top 10 Party Walls Posts of 2018!

2018 has been a year to remember for SWA’s Party Walls blog. Our consultants have shared their passion for high performance buildings by recounting stories from the field and providing information, new findings, and best practices to improve the built environment.

Whether discussing topics based in New York City or Southeast Asia, here are our fan favorites from 2018…

Collage of blog images

(more…)

Here’s to Our Buildings, Our Health! SWA’s Top 10 Tips for a Healthier Indoor Environment – Part 1

How many of you out there would say you are happy at your place of work? Are you having a hard time concentrating? Now, take a pulse on your surroundings. Are the lights too bright? Are you too cold? Too hot? Do you hear constant humming from the HVAC equipment in the background? How much sleep are you getting at night? How many plants are in your view? Do you even have a view?

I’m sure many of you have heard the statistics that we spend nearly 90% of our days indoors. BUT, did you know that:

  • 75% of deaths are caused by chronic disease, up from 13% in 1800;
  • Today’s children are the first generation expected to have a shorter life expectancy than their parents;
  • 85% of the 82,000 chemicals in use are lacking in available health data.

When we hear the term “high performance building,” many of us think about energy efficiency first. But, what factors contribute to human health in buildings? How do we design for and maintain efficient building performance without compromising occupant health and well-being? What benefits are associated with healthy homes and work spaces? These are the questions we should be asking ourselves.

Stok report breaking down the cost savings associated with healthy work spaces

Lots of research has been done. Pulling from the LEED, EGC, and WELL concepts, and supported by case studies (specifically Harvard’s School of Public Health’s 9 Foundations and Stok’s report on how workspaces that promote health and wellness), here are SWA’s Top 5 (of 10) tips to effectively address Indoor Air Quality (IAQ) in buildings:

(more…)

Does Your Exhaust Fan Suck? Part 1

You most likely don’t even think about it when using the bathroom. Flip the switch, hear the exhaust fan, and everything is working as it is intended…right? Far too often, the answer is NO, and it is no fault of the user. Sure, homeowners should take a minute each year to vacuum the inside of the exhaust fan housing, but otherwise, these fans should just work. So why don’t they? Hint…it all depends on how it was sized and installed.

Background

The purpose of exhaust ventilation is to remove contaminants (including moisture) that can compromise health, comfort, and durability. Exhaust fans are amongst the simplest mechanical systems in your home, but decades of experience working in homes has shown us that even the easiest things can get screwed up. Far too often, exhaust fans rated for 50 or 80 cubic feet per minute (cfm) of air removal are actually operating at less than 20 cfm. In theory, the exhaust fan should be installed in a suitable location and then ducted to the outside via the most direct path possible. However, the installation of an exhaust fan can involve up to three trades: an electrician typically installs and wires the unit; an HVAC contractor supplies the ductwork; and, the builder/sider/roofer may install the end cap termination. What could go wrong?

As energy efficiency standards and construction techniques have improved over time, new and retrofitted buildings have become more and more air-tight. If not properly addressed, this air-tightness can lead to moisture issues. Quickly removing moisture generated from showers is a key component of any moisture management strategy. While manufacturers have made significant advancements in the performance, durability, and controls of exhaust fans, these improvements can all be side-stepped by a poor installation.

So how do you correct this issue? (more…)

Multifamily Passive House Ventilation Design Part 2: HRV or ERV?

*click here to read Part 1 of this blog

In climates with significant heating and/or cooling seasons, Passive House projects must have a balanced heat or energy recovery ventilation system. These systems use a heat exchanger to transfer heat and moisture between the outgoing return and incoming outdoor airstreams. The operation of recovery ventilators reduces the energy required to heat and cool decreasing the building’s carbon footprint. Project teams can select either:

  • Heat Recovery Ventilators (HRV) that transfer heat from the return air stream to the outside air stream; or,
  • Energy Recovery Ventilators (ERV) that transfer heat and moisture from the return air stream to the outside air stream.

Deciding between an HRV and an ERV gets more complex when the Passive House concept is scaled from a single-family home to a multifamily program. What the industry has learned from the development of airtight buildings and programs such as Passive House and R2000, is that indoor relative humidity must be controlled through continuous ventilation. The extremely air tight building envelope required of a Passive House, combined with high internal moisture gains from an occupant dense multifamily program (coming from occupants, kitchens and bathrooms), forces additional moisture management considerations during mechanical ventilation design. Maintaining acceptable interior relative humidity in both the heating and cooling season is paramount for building durability and occupant comfort. It’s appropriate that Passive House professionals claim this simple motto: “Build tight, ventilate right!”

In New York City where the multifamily Passive House market is rapidly growing, there is a significant heating season and a demanding cooling season with high humidity (Climate Zone 4A). With this seasonal variation, there are four primary operating scenarios for an HRV or ERV that need to be considered during design:

Summer Condition – HRV

An HRV operating in the summer (hot-humid exterior air and cool-dry interior air) introduces additional moisture to the building through ventilation. Heat is transferred from the incoming outside airstream to the return airstream leaving the building which cools supply air, but exterior moisture is not removed from the incoming air. The building’s dehumidification load increases as a consequence of additional moisture from the outdoor air.*CON*

HRV Summer operation (more…)

Multifamily Passive House Ventilation Design Part 1: Unitized or Centralized HRV/ERV?

*click here to read Part 2 of this blog

Project teams pursuing Passive House frequently ask, “Where do we locate the HRV/ERV?” The answer is complex when the Passive House concept is scaled to a multifamily program.  While there are two primary arrangements for HRV/ERV systems, the trade-off is dynamic and needs to be carefully considered as multifamily Passive House projects begin to scale. A low volume HRV/ERV unit ventilating an individual apartment is a unitized HRV/ERV. High volume HRV/ERV units ventilating multiple apartments and often servicing several floors, is referred to as centralized HRV/ERV.

As Passive House consultants we can attempt to address the system arrangement question with building science; however, in New York City rentable floor space is very valuable, so considering the floor area trade-off is of particular interest to project teams. When a unitized HRV/ERV system cannot be located in a drop-ceiling due to low floor-to-floor height, it is placed in a dedicated mechanical closet. This closet is typically no smaller than 10 ft2 and includes the necessary ductwork connections to the HRV/ERV unit. The alternative solution is to increase the floor-to-floor height to accommodate the HRV/ERV unit and horizontal duct runs in the ceiling. Centralized HRV/ERV systems, however, allow short horizontal duct runs but require floor space to accommodate vertical shafts. With supply and exhaust ducts coupled together the required floor area is about 8-12 ft2. As a result, centralized HRV/ERV systems may actually require more floor area than a unitized system.

Example: In the case of Cornell Tech, vertical supply and exhaust duct work for the centralized HRV/ERV system required 222.5 ft2 per floor, or 13 ft2 per apartment (see image 1 below). Unitized HRV/ERV mechanical closets would have required an estimated 170 ft2 per floor, or 10 ft2 per unit (image 2 on right).

Comparison images HRV/ERV

Image 1 & 2:  These images compare the amount of floor area required for centralized and unitized HRV/ERV systems. Image 1 on the left, shows the 12ft2 floor area required for vertical shafts servicing the centralized ERV at Cornell Tech. Image 2 on the right is hypothetical, showing the typical location and 10ft2 floor area required for a unitized HRV/ERV mechanical closet.

(more…)

Ventilation Idyll

Residential ventilation is really a tricky topic. But if you’re looking for a practical, cost-effective, holistic solution, go somewhere else. This post offers none.

Hopefully I can dig into practical solutions in future posts, but I think it’s important to be clear about why we ventilate and what an “ideal” ventilation system might look like in a new, efficient home. My ideal system is similar for both single-family or multi-family (though practical issues can be very, very different).

Purpose of ventilation: Remove contaminants that can compromise health, comfort, productivity, durability, etc. I’m sure there are more rigorous definitions out there, but this will work for now. There are other ways to lower contaminant levels:

Shangri La

Shangri-La image via Olga Antonenko

  • Emitting fewer contaminants from materials and activities is obviously good. Do this.
  • Actively filtering, adsorbing, or otherwise removing contaminants from indoor air can also be good. There’s talk about doing more of this, but I’m tabling it for this discussion. This may be something to keep an eye on down the road.

For most new residential buildings, mechanical ventilation is still be the primary means to remove contaminants. Or at least it’s the primary method that designers/developers need to plan for now.

If building a new, efficient home in Shangri-La, my ideal ventilation systems would look like this: (more…)

Oh, the Weather Inside is Frightful!

Winter in the City

Wintertime in New York City: cold wind whips down the avenue and seems to follow you as you leave the frozen street and enter your building. The cold gust pulls the heat out of the lobby and even seems to follow you as you make your way up the building, whistling through the elevator shaft as it goes. The colder it gets outside, the worse it gets inside. Can’t somebody please make it stop? Is it too much to ask to be comfortable in your own lobby?

No, it is not too much to ask, and yes, we can help. It is 2016 and we have the technologies and expertise to better manage this all-too-common problem, but first we must examine what forces lay at the heart of the issue.

multifamily_ventilation_winter

(more…)

It Can Take Years – A Market Adoption Story

Earlier this year, at the AHR Expo in Orlando, the biggest trade show for HVAC professionals, Aeroseal’s duct sealing technology was declared the Product of the Year, the top honor of the Innovation Awards. Aeroseal was recognized as “a groundbreaking solution to an industry-wide problem.”

The unique appeal of the Aeroseal technology is that it seals ducts from the inside. Walls and ceilings do not need to be removed or damaged to gain access for traditional mastic sealing. Aerosolized vinyl polymer particles from 2 to 20 micrometers are injected into a pressurized duct system. The particles stay suspended in the air stream until they reach the leaks, where they are deposited and built up at the leak edges until the leaks are sealed.

The Aeroseal technology has been around for more than two decades. It was developed at Lawrence Berkeley National Laboratory in the early nineties and patented in 1997. It has received many awards over the years including the Best of What’s New award from Popular Science magazine in 1996 and the Energy 100 award from the U.S. Department of Energy.

So what’s the big deal?

(more…)

Popular Multifamily Retrofits, Part II

SWA_PWpopMFRx2

In our first entry of this three-part series, we described advanced controls for electrically heated buildings, combined heat and power systems, and upgraded atmospheric boilers. This time around, we’ll examine the ins-and-outs of exhaust ventilation in multifamily buildings. (more…)

Creating a Healthier Indoor Environment

Erica Brabon

Written by SWA Senior Consultant, Erica Brabon

When close to 90% of our lives are spent inside, you would expect extensive measures would be taken to ensure our buildings provide healthy environments in which to live and work. Unfortunately, more often than not, tested air quality inside buildings is much worse than outside.

Here are some common causes of these indoor pollutants:

  • Pesticide use during regular pest control treatments
  • Pollutants (asthma triggers) from cleaning products, smoking, pets, pests, fuel use, etc;
  • Inadequate ventilation;
  • Mold and moisture build up from water leaks and inadequate ventilation; and,
  • Carbon monoxide from appliances, heaters or other equipment.

This problem is made worse by the way in which the pollutants utilize air movement pathways throughout the building. Anywhere air can move, moisture can move and pollutants can move. This presents an intersection of energy efficiency and healthy buildings; air sealing these leakage pathways in the buildings stops pollutants from traveling and saves heating energy.

Let’s revisit the common pollutants and strategies for intervention and mitigation. You’ll notice a common theme of “find the source, stop the source, seal the holes.”

(more…)

The owner of this website has made a commitment to accessibility and inclusion, please report any problems that you encounter using the contact form on this website. This site uses the WP ADA Compliance Check plugin to enhance accessibility.