MENU

Party Walls

Just Your Typical Blower Door Test… in Sri Lanka – Star Garment Innovation Center

As the number of projects pursuing Passive House certification increases, so does the demand for whole building blower door tests. And so, performance of recent blower door tests took us to uncharted territory, not only for SWA, but for the Passive House Standard.

Rendering of Star Garment Facility

 

Working remotely with a project team across the globe, the Passive House team at SWA was tasked with retrofitting an outdated factory in Katunayake, Sri Lanka, into a Passive House certified garment manufacturing facility. Jordan Parnass Digital Architecture (JPDA) recruited SWA to provide technical assistance to the project team. Responsibilities for this project included Passive House design analysis and recommendations, mechanical design review, energy and thermal bridging modeling, and the testing and verification necessary to achieve certification from the Passive House Institute (PHI).

(more…)

The Results Are in from the NYC Ice Box Challenge!

On April 21, 2018, two blocks of ice weighing exactly one ton each were placed into what appeared to be identical sheds in Times Square. The purpose? To measure how much each block would melt over a 30-day period, ultimately demonstrating the efficacy of Passive House construction methods.

The first shed, or Ice Box, was built to meet current NYC Building Code standards, which lack stringent requirements for building envelope performance. The second was constructed using building principles adopted from the Passive House Standard, including the utilization of high performance building materials, a superior airtight building envelope with advanced insulation, and triple-pane windows.

Graphic of Iceboxes

After 30 days of exposure, the Ice Boxes were publicly unveiled, and the results were exactly what building professionals had anticipated. The block of ice contained in the Ice Box constructed to NYC Building Code resulted in a final weight of 126 pounds, while the block of ice within the Passive House Ice Box weighed an astonishing 756 pounds, retaining 42% of its mass!

So, What Did We Learn… (more…)

Reducing Air Leaks in Multifamily Buildings (and why you should care)

If there was ever a silver bullet when it comes to best practices in multifamily buildings, air sealing would be it. Compartmentalization – or air sealing each unit to prevent infiltration between units and to the exterior – addresses many major issues we see in buildings.

Better HEALTH

  • Air sealing is the best strategy to keep pests out and limit their movement within a building.
  • Air carries a lot of moisture, so eliminating air leaks helps keep buildings dry and reduces the risks of mold and water damage.
  • Compartmentalization prevents contaminated air from garages, basements, attics, and other undesirable sources from entering living spaces.

Improves COMFORT

  • Air sealing reduces drafts and eliminates hot and cold spots.
  • Limiting air transfer from one unit to the next reduces transmission of noise, smoke, and odor between units.

Wastes less ENERGY

  • Air sealing lowers heating and cooling bills maintaining a more consistent indoor temperature.
  • Compartmentalization improves the performance of ventilation and mechanical systems by limiting pathways for stack effect – the force of warm air from low to high – to occur in larger buildings.

How to Air Seal Multifamily Units

It’s important to remember to create a complete air barrier around the entire cube of a multifamily unit, not just to the exterior – any and all penetrations need to be sealed.

(more…)

Sustainable Spaces for Seniors

Panelists and organizers at the “Sustainable Spaces for Seniors: Design for Aging and the Environment” event at Hafele’s NYC Showroom

On May 1st, 2018, Steven Winter, founder and chairman of Steven Winter Associates (SWA), and Harold Bravo, Accessibility Consulting Director at SWA, moderated an event at the Hafele Showroom to discuss senior housing in New York City and its relation to accessible and sustainable design. The event was organized jointly by the AIANY Design for Aging Committee (DFA) and the AIANY Committee on the Environment (COTE).

A panel of experts presented perspectives from architecture, real estate development, and municipal government, and discussed the challenges of designing sustainable, comfortable, accessible, and healthy buildings for the aging population in New York City. The panel included Kleo J. King (Deputy and General Counsel, Mayor’s Office for People with Disabilities), Isaac Henderson (Development Director, L+M Development Partners), Jack Esterson (Design Partner, Think! Architecture+Design), and Rich Rosen, AIA, LEED AP (Principal, Perkins Eastman).

(more…)

Trying to Be Rational in an Irrational World

Think about the last time you went looking for a new car. What did you look for? I am guessing you started with your needs for a vehicle. Are you looking for a large car/SUV to move a lot of people or equipment, a car for commuting to work, or something to enjoy on the weekends? Next you probably were interested in the looks of the vehicle because it is a large investment and you should like what you drive. I am guessing you glanced at the miles per gallon (mpg) of the car. You even likely went online to see reviews from others on the comfort, crash test rating, and typical maintenance issues of the car. Of course, you will need to look at the sticker price. I am even assuming you asked to test drive the vehicle to make sure that the information that you obtained aligns with how you perceive the vehicle.

Now, what if I told you that you must make that vehicle purchase decision only based on the dimensions of the car, the features (radio, A/C, seat controls, etc.) of the car, some pictures of the interior, and the price. Do you think you could decide on which car you would want? My guess is that you would say I am crazy and that you wouldn’t make the decision on such a pricey purchase with so little information. But, that is exactly what millions of people do when making a significantly more expensive purchase… a home.

(more…)

Can you do a HERS Rating on an apartment in a 30-story building? Not now, but maybe in 2019!

ANSI/RESNET/ICC 301-2014 is the Standard for the Calculation and Labeling of the Energy Performance of Low-Rise Residential Buildings using an Energy Rating Index. It is the basis of the most common Energy Rating Index, RESNET’s HERS Index, which is utilized by utilities and building programs like LEED© and ENERGY STAR®, which require a consistent index to evaluate performance.

ANSI RESNET ICC 301-2014 imageOn March 2, 2018, RESNET released a draft of the 2019 version of ANSI/RESNET/ICC 301, where the most significant change will be the expansion of its scope to include Dwelling Units and Sleeping Units in ANY height building, whether that building is defined by IECC as “Residential” or “Commercial”. Other changes will include those developed by the RESNET Multifamily Sub-Committee, to better address shared systems like HVAC, hot water, solar PV, and laundry, and other scenarios specific to multifamily buildings that have largely been unaddressed until now.  The 1st preliminary draft standard of the 2019 version (dubbed PDS-01) includes these important improvements, along with all addenda to Standard ANSI/RESNET/ICC 301-2014 that were approved prior to March 2.

How Does the Revision Process Work?

The ANSI/RESNET/ICC Standards 301 (and 380) are under “continuous maintenance”. What does this mean? As revisions are needed to improve the standards, they are accomplished via “addenda”. Each addenda has to go through a “public comment” period to ensure that all stakeholders get to provide their opinions or objections to the proposed change before it becomes part of the standard. Rather than re-publishing a new edition of the standard each time a revision is approved, these standards are instead updated every 3 to 5 years to integrate any approved addenda into the body of the standard (instead of as separate addenda), along with any other necessary revisions into a new edition. This is similar to other standards like IECC, ASHRAE 62.2, or ASHRAE 90.1, which typically release a new version every 3 years. (more…)

Multifamily Passive House Ventilation Design Part 2: HRV or ERV?

*click here to read Part 1 of this blog

In climates with significant heating and/or cooling seasons, Passive House projects must have a balanced heat or energy recovery ventilation system. These systems use a heat exchanger to transfer heat and moisture between the outgoing return and incoming outdoor airstreams. The operation of recovery ventilators reduces the energy required to heat and cool decreasing the building’s carbon footprint. Project teams can select either:

  • Heat Recovery Ventilators (HRV) that transfer heat from the return air stream to the outside air stream; or,
  • Energy Recovery Ventilators (ERV) that transfer heat and moisture from the return air stream to the outside air stream.

Deciding between an HRV and an ERV gets more complex when the Passive House concept is scaled from a single-family home to a multifamily program. What the industry has learned from the development of airtight buildings and programs such as Passive House and R2000, is that indoor relative humidity must be controlled through continuous ventilation. The extremely air tight building envelope required of a Passive House, combined with high internal moisture gains from an occupant dense multifamily program (coming from occupants, kitchens and bathrooms), forces additional moisture management considerations during mechanical ventilation design. Maintaining acceptable interior relative humidity in both the heating and cooling season is paramount for building durability and occupant comfort. It’s appropriate that Passive House professionals claim this simple motto: “Build tight, ventilate right!”

In New York City where the multifamily Passive House market is rapidly growing, there is a significant heating season and a demanding cooling season with high humidity (Climate Zone 4A). With this seasonal variation, there are four primary operating scenarios for an HRV or ERV that need to be considered during design:

Summer Condition – HRV

An HRV operating in the summer (hot-humid exterior air and cool-dry interior air) introduces additional moisture to the building through ventilation. Heat is transferred from the incoming outside airstream to the return airstream leaving the building which cools supply air, but exterior moisture is not removed from the incoming air. The building’s dehumidification load increases as a consequence of additional moisture from the outdoor air.*CON*

HRV Summer operation (more…)

Multifamily Passive House Ventilation Design Part 1: Unitized or Centralized HRV/ERV?

*click here to read Part 2 of this blog

Project teams pursuing Passive House frequently ask, “Where do we locate the HRV/ERV?” The answer is complex when the Passive House concept is scaled to a multifamily program.  While there are two primary arrangements for HRV/ERV systems, the trade-off is dynamic and needs to be carefully considered as multifamily Passive House projects begin to scale. A low volume HRV/ERV unit ventilating an individual apartment is a unitized HRV/ERV. High volume HRV/ERV units ventilating multiple apartments and often servicing several floors, is referred to as centralized HRV/ERV.

As Passive House consultants we can attempt to address the system arrangement question with building science; however, in New York City rentable floor space is very valuable, so considering the floor area trade-off is of particular interest to project teams. When a unitized HRV/ERV system cannot be located in a drop-ceiling due to low floor-to-floor height, it is placed in a dedicated mechanical closet. This closet is typically no smaller than 10 ft2 and includes the necessary ductwork connections to the HRV/ERV unit. The alternative solution is to increase the floor-to-floor height to accommodate the HRV/ERV unit and horizontal duct runs in the ceiling. Centralized HRV/ERV systems, however, allow short horizontal duct runs but require floor space to accommodate vertical shafts. With supply and exhaust ducts coupled together the required floor area is about 8-12 ft2. As a result, centralized HRV/ERV systems may actually require more floor area than a unitized system.

Example: In the case of Cornell Tech, vertical supply and exhaust duct work for the centralized HRV/ERV system required 222.5 ft2 per floor, or 13 ft2 per apartment (see image 1 below). Unitized HRV/ERV mechanical closets would have required an estimated 170 ft2 per floor, or 10 ft2 per unit (image 2 on right).

Comparison images HRV/ERV

Image 1 & 2:  These images compare the amount of floor area required for centralized and unitized HRV/ERV systems. Image 1 on the left, shows the 12ft2 floor area required for vertical shafts servicing the centralized ERV at Cornell Tech. Image 2 on the right is hypothetical, showing the typical location and 10ft2 floor area required for a unitized HRV/ERV mechanical closet.

(more…)

Over Pressure (Part One)

Steam pressure gets a disproportionate amount of attention. That’s partially due to the common, but not necessarily true idea that higher pressure equals more fuel use. Remember, it’s not the steam’s pressure that heats the building; it’s the steam’s heat energy. In fact, you can heat a building with 0 psig steam. You can even heat a building with a boiler that’s too small and never builds positive pressure. You can’t do it well, but you can do it.

System Operation

Thanks to the law of conservation of energy, we know that energy cannot be created or destroyed — it can only be altered from one form to another. In a steam heating system, the flow of energy goes like this:

  1. The boiler transfers Btus from the fuel to the steam (energy input).
  2. The steam transfers those Btus to the rooms.
  3. The rooms transfer those Btus to the outdoors (heat loss, aka the load).
image of radiator

Too much heat at any pressure

It’s important to keep this energy flow in mind because they are linked and self-equalizing. If the energy input exceeds the heat loss, the building temperature will increase, which, in turn, increases the heat loss. And, a building’s heat loss depends on the temperature difference between inside and outside and the amount of air transfer occurring. So, the best way to keep the heat loss down is to keep the indoor temperatures as low as possible, and keep the windows closed. Furthermore, in an apartment building, the coldest room drives the load in any steam-heated building and the Super needs to send enough heat around to satisfy the hardest-to-heat apartment.

(more…)

Recovering from Heat Recovery Woes

IECC Image

The International Energy Conservation Code (IECC) has a number of requirements involving energy recovery on ventilation systems. Requirements vary based on climate zone, building type and size, equipment capacity, and equipment operating hours. As a result, many new construction projects must now incorporate energy recovery considerations into their design.

An energy recovery unit (ERU) equipped with a heat wheel can be a great way to satisfy these energy recovery requirements. The ERU can be a roof-mounted air handling unit, or can be an air handling unit located inside a mechanical room with outdoor air and exhaust streams ducted in. The heat wheel is positioned so that half of the wheel sits in the exhaust air duct and the other half sits in the outdoor air intake duct. During cold weather, the wheel spins, transferring heat from the exhaust stream to the outdoor air intake stream. During hot weather, the wheel transfers heat from the outdoor air intake stream to the exhaust stream. In both cases the heat exchange enables the building to take advantage of the more comfortable conditions of the exhaust air, while still allowing fresh air to enter the building. During extreme weather conditions, heat wheels can save energy on space conditioning while still allowing for healthy indoor air quality.
(more…)