MENU

Party Walls

Designing Solar for High Density Areas

As seen in:

Humans have been trying to harness the power of the sun for millennia. The advent and popularization of photovoltaics in the latter half of the twentieth century made doing so accessible to the masses. Today, solar arrays are commonly seen adorning the roofs of suburban homes and “big-box” retailers, as well as on other landscapes including expansive solar farms and capped landfills. Until recently, the common thread amongst these locations has been the employment of open space. Solar applications have historically been reserved for use in areas of low-to-moderate building density.

By the end of 2050, solar energy is projected to be the world’s largest source of electricity. While utility-scale solar will comprise the majority of this capacity, there will also be significant growth in the commercial and residential sectors – particularly in cities. Industry influencers are increasingly focused on creating opportunities for solar applications in high-density areas, where much of the demand lies.

In their 2014 Technological Roadmaps for solar PV and solar thermal electricity (STE), the International Energy Agency (IEA) predicts Solar PV and STE to represent over 25% of global electricity generation by 2050In their 2014 Technological Roadmaps for solar PV and solar thermal electricity (STE), the International Energy Agency (IEA) predicts Solar PV and STE to represent over 25% of global electricity generation by 2050.

 

(more…)

Nanogrids: A Whole Building Approach to Distributed Energy Resources

Distributed Energy Resources

Distributed Energy Resources (DERs) are a growing part of the energy landscape in the United States, and they are becoming an ever more attractive opportunity for households, companies, and building owners to gain control of their own energy needs. By 2024, it is estimated that solar PV plus energy storage will represent a $14 billion industry [1]. These resources are installed on the customer side of the utility meter and include distributed generation, such as combined heat and power (CHP) and solar photovoltaics (PV); energy storage assets, such as batteries; energy efficiency and demand management; and building energy management software. When deployed correctly, DERs have the potential to reduce the carbon footprint of the electric grid, increase grid reliability and resiliency, and defer the need for costly upgrades to grid distribution and transmission infrastructure [3,4,7]. (more…)

Solar Photovoltaics and New York Energy Code

Industry Trends

Over the past decade, the story of solar photovoltaic (PV) power has been one of both accelerating deployment and consistent, significant reductions in cost. This success has been driven by increasingly advantageous economies of scale, and supported by incentives and initiatives at all levels of government.

Figure 1. Solar PV systems have seen a dramatic reduction in cost

In late 2015, the federal Investment Tax Credit [3], a primary financial incentive for solar PV systems, was extended at its current rate of 30% through 2019, despite a contentious environment in Washington. It is scheduled to be stepped down through 2022, after which the commercial credit will expire and the residential credit [7] will remain at 10% indefinitely.

The National Renewable Energy Laboratory’s annual solar benchmarking report [4] shows that over the past seven years, PV system costs have dropped 58.5% in the residential sector, 59.3% in the commercial sector, and 68.2% in the utility-scale sector. As a clear sign of the times, utility-scale solar achieved the U.S. Department of Energy (DOE) SunShot Initiative’s goal of $1.00/W early this year, three years ahead of schedule [9]. According to the U.S. Energy Information Agency (EIA) [8], these trends should continue, leading to solar power’s increasing presence as a key component of the national electrical generation mix. The EIA projects solar to be the fastest growing form of renewable energy, increasing by 44% by the end of 2018 for a total deployed capacity of 31 GW and accounting for 1.4% of utility-scale electricity generation.

(more…)

Connecticut Proposes Budget Cuts on Clean Energy Funding

[av_textblock size=” font_color=” color=”]
Written by Carmel Pratt, Sustainability Consultant

If you live in Connecticut and are as obsessed with energy-related news as we are, you’ve probably already heard about the proposed cuts (to the tune of ~$22 million) from the state’s Regional Greenhouse Gas Initiative (RGGI) clean energy program. RGGI is a nine-state agreement between CT, DL, ME, MD, MA, NH, NY, RI, & VT to cap and reduce power sector CO₂ emissions. In other words, the program is designed to be a set of guidelines for regulating, budgeting, and trading emissions from electric power plants in the cooperating states. This initiative is the first of its kind in the nation, being a mandatory (as set forth by each state’s program design) and market-based emissions reduction program. The nine states are currently in the process of gathering input from stakeholders and experts for the 2016 program review. (more…)

Can A House Be Too Tight?

 

The Importance of Mechanical Ventilation

During most presentations we give about air sealing and infiltration, like clockwork someone will ask, “but doesn’t the house need to breathe, aren’t we making buildings too tight?” This is a popular green building myth, but  people need to breathe, walls don’t. In fact buildings perform best when they’re air tight and we can temper, filter and regulate the amount of fresh air.

We know the symptoms of poor ventilation – odors, humidity issues, condensation on windows, high levels of chemical off-gassing and even elevated carbon monoxide levels. Some of these effects are immediately apparent to occupants (odors, window condensation) while others may be imperceptible (carbon monoxide). Indoor air quality is a comfort, health and safety concern. However, these problems aren’t necessarily symptoms of tight buildings and can occur in all types of construction, old and new, tight and leaky.

Natural Ventilation Doesn’t Work Anymore

In the past buildings were ventilated with outside air naturally when the wind blew and/or it was cold. If this natural ventilation (or what building professionals call air infiltration) ever worked it doesn’t anymore.

red barn image

“Did you grow up in a barn?” Most of us learned as children the importance of keeping outside air out during heating and cooling seasons. However natural ventilation through building cracks brings unintended moisture and temperature differences that can cause condensation.

 

Old buildings had no insulation or air sealing, so structural failures caused by condensation within a wall assembly rarely occurred. Building codes now require insulation and air sealing which helps lower our energy bills and keep us comfortable inside. But when infiltration happens in a wall full of insulation, condensation can occur on the cool side of the wall assembly, which over time can rot the framing and cause structural issues. This is why it’s critical to prevent air leaks and better understand the thermal boundary.

Americans spend more time in our homes than ever, almost 15 hours per day by some estimates, and humans give off a lot of moisture. While home we tend to keep the windows closed. We’re also seeing increasing amounts of Volatile Organic Compounds (VOCs) emitted from our paints, furniture and household products that are made with chemical compounds that we know little about. For example, solid-wood furniture does not offgass, but plywood, particle board and foam sure do. How much solid wood furniture do you have in your house? Taken together this means there is more moisture, odors and pollutants added to our homes each day than was the case 30 years ago. The EPA estimates indoor pollutants to be 2 to 5 times higher inside homes than outside.Because of all these indoor pollutants, we clearly need to bring fresh outdoor air into the house.

However, the unintentional natural ventilation air our buildings do get rarely comes directly from outside. In the best-case scenario it creeps in through the various cracks in the exterior walls and windows, but most often comes from the least desirable locations shown in the image below: crawlspaces, garages and attics. Leakage from those locations is certainly not “fresh” air. Do you want to breathe in hot dusty attic air, or damp air from your crawlspace? You just might be.

Image of infiltration

Natural ventilation is forced through infiltration points which are most often from the unhealthiest locations in homes

Moreover, unintentional natural ventilation (infiltration) is unreliable and poorly distributed. Infiltration is primarily driven by wind speed and the temperature difference between outdoors and indoors. These weather variables vary day-by-day and season-to-season. For instance, the chart below shows the average conditions for Lancaster, PA. Note the weather fluctuations throughout the year:

  • During summer wind speeds are almost 50% lower
  • The temperature difference is 6-8 times greater during winter

lancaster-weather-conditions chart

These erratic conditions cause the building to be over-ventilated half the time and under-ventilated the other half. Also, infiltration is poorly distributed throughout the house. A room with a couple exterior walls and leaky windows will get far more outside air than an interior kitchen or bathroom. Wind and temperature differences drive ‘natural ventilation’ in the form of infiltration in homes. However these factors are highly variable and unreliable.

To summarize the need for mechanical ventilation:

  • There are more pollutants in our homes than ever, requiring more ventilation air
  • Homes are better insulated and air sealed than they used to be
  • Much of the infiltration that does occur comes from undesirable locations
  • Even the portion of infiltration that can be considered “fresh air” varies sporadically based on weather conditions
  • Having air leaks in an insulated wall, attic or floor assembly can cause condensation and create structural failures.

For all these reasons, relying on air leaks as natural ventilation no longer works. It doesn’t work for normal homes, and it especially doesn’t work for insulated or tight homes.

Build It Tight, Ventilate It Right

The better approach is to provide controlled mechanical ventilation by providing enough air to meet ASHRAE 62.2 and air seal the house to prevent moisture issues, high energy bills, and air from the attic and crawlspace or basement from polluting our indoor air.  As the mantra goes, “build it tight, ventilate it right!”

A well-designed ventilation system brings several advantages.

  • It allows control over exactly how much fresh air is delivered and when.
  • You can adjust the amount of ventilation air if the occupancy changes (e.g. kids go off to college) or shut it down altogether while on vacation, or when windows are open.
  • It delivers a consistent amount of air year-round, no matter what the weather conditions.
  • It draws air directly from outside, so the air is guaranteed to be fresh.

The main disadvantage to mechanical ventilation is the cost to run the fan. There are many different types of systems, with widely varying costs. As the following case studies shows, this additional cost can be more than offset by the savings in reducing the uncontrolled infiltration.

Mechanical Ventilation Case Study

Consider the following single family detached home renovation project in Lancaster, Pennsylvania. Before renovation, the house had no mechanical ventilation, and much of the infiltration air came from the attic and basement, providing dirty air to the house. The house was leaky enough to meet ASHRAE 62.2 levels for natural ventilation. But with an infiltration rate of 1.1 air changes per hour, the house was replacing all its indoor air every hour, leading to huge heating bills.

During the renovation air sealing brought the infiltration down by 70% and mechanical ventilation was added to deliver the recommended ventilation rate, which in this case was 0.20 ACHn.

Looking at the annual utility bills, in the original house it cost almost $600 per year to heat the infiltration air. After air sealing this was cut to $217. Heating the ventilation air cost $174, and running the fan cost an additional $14 per year. Not only is the house now less drafty and more comfortable, the indoor air quality is substantially better AND the homeowner is saving $194 per year.

Not every case follows this same savings ratio. If the original house was  tighter to begin with there may not have been any theoretical savings. If the mechanical ventilation system were more efficient, there could be more savings.

But remember that mechanical ventilation puts the control in the hands of the occupant, not mother nature. If there seems to be too much ventilation, the occupant can dial it back. If there are indoor air concerns the occupant can increase the rate.

Designing an Effective Mechanical Ventilation System

There are several strategies for designing a good mechanical ventilation system, and there isn’t a one-size fits all approach for homes, multifamily buildings and commercial spaces. It’s important to keep occupants in mind and install the proper controls to make the system work for them. Everyday Green has helped MEPs and HVAC contractors select and size mechanical ventilation systems for all budgets and size buildings, homes and unit spaces. But one thing is clear: relying on air leaks to provide fresh air is no longer an effective strategy. Contact us today with your mechanical ventilation questions.

Andrea Foss

 

By Andrea Foss, Director,  Mid-Atlantic Sustainability Services