Trends in Healthcare: Patient Check-in Kiosks

“Trends in Healthcare” is a recurring series that focuses on exciting new designs and technologies we’re seeing in healthcare projects and provides best practices on how to ensure that these latest trends are accessible to persons with disabilities. We build on the wealth of knowledge we gain from working with healthcare design teams, construction crews, and practitioners to provide practical solutions for achieving accessible healthcare environments.

And now for our first installment…Patient Check-in Kiosks!

Check-in kiosks are becoming prevalent in state-of-the-art healthcare facilities. Where provided, at least one of each type of kiosk must be accessible.

Imagine that you are walking into the waiting room of your doctor’s office for your annual checkup. The waiting room is overflowing with people and the receptionists are answering phone calls, entering information into the computer, and taking care of the long line of patients ahead of you. That’s when, out of the corner of your eye, you see several touch screens located on a nearby counter. You’ve grown accustomed to self check-in kiosks at airports and theaters, but not at your doctor’s office. Eager to skip the long line, you make your way toward the digital devices. Hooray! Patient check-in kiosks have arrived!

Read more

Just Your Typical Blower Door Test… in Sri Lanka – Star Garment Innovation Center

As the number of projects pursuing Passive House certification increases, so does the demand for whole building blower door tests. And so, performance of recent blower door tests took us to uncharted territory, not only for SWA, but for the Passive House Standard.

Rendering of Star Garment Facility

 

Working remotely with a project team across the globe, the Passive House team at SWA was tasked with retrofitting an outdated factory in Katunayake, Sri Lanka, into a Passive House certified garment manufacturing facility. Jordan Parnass Digital Architecture (JPDA) recruited SWA to provide technical assistance to the project team. Responsibilities for this project included Passive House design analysis and recommendations, mechanical design review, energy and thermal bridging modeling, and the testing and verification necessary to achieve certification from the Passive House Institute (PHI).

Read more

Low-Carbon Concrete: Reducing the Embodied Energy of a Notorious Emitter

It is safe to say we are in a climate crisis. Of the last 17 years, 16 have been the hottest on record.[1] Sea level is expected to rise by as much as eight feet by the end of the century.[2] And by 2050, as many as 140 million people will have been displaced by climate change.[3] The time to act is now, and a major area of impact is buildings, which account for 40% of carbon emissions in the United States. Better envelopes, lighting, and mechanical systems are helping buildings become more efficient, which means an increasing proportion of carbon—up to 68% of a building’s lifetime emissions—is locked up in materials.[4] This “embodied” carbon gets released during a material’s extraction, manufacture, transport, maintenance, and, eventually, disposal.

If our industry is to meet the 2030 Challenge of carbon neutrality by the close of the decade, we will need to reevaluate building materials and select low-carbon alternatives.

Embodied carbon life-cycle

Figure 1: Courtesy of Faithful+Gould

Read more