Foundation Waterproofing – Proper Installation and What NOT to do!

As mentioned in Foundation Waterproofing 101, water damage to a foundation can be very costly and difficult to repair. By paying close attention to how and where water might enter the foundation during the early stages of construction, typical failures can be avoided by following these simple guidelines…

For the Designer: Keys to proper installation

Design and Quality Assurance

  • Don’t wait to design the foundation waterproofing system after you’re already in the ground!
  • Specify and detail the appropriate system for each project. Meet with manufacturer reps early!
  • Require shop drawings and kickoff meetings to ensure the entire team understands the importance of the design! Review examples of common failures.
  • Get your consultants on board early: Geotechnical engineer, Structural engineer, Waterproofing/enclosure consultant.
  • Review warranties, require third party inspections, installer certification, and contractor training.

For the Installer: Keys to proper installation

Substrate preparation

  • Provide smooth continuous surfaces to install waterproofing – minimize jogs, protrusions, and sharp edges.
  • At slabs: compacted fill/rigid insulation board/rat slabs
  • At walls: fill bugholes, remove/grind concrete fins, mortar snots, fill form tie holes, verify form release agents and compatibility.

Read more

Foundation Waterproofing 101

Foundation Waterproofing Cutaway

Credit: Basement Waterproofing Baltimore (2018, February 20). http://aquaguardwaterproofing.com

Designing buildings with water protection in mind is critical to protecting buildings from future damage, difficult/costly repairs, and potential litigation. Foundations are by necessity in the ground. So is water. Foundation waterproofing is intended to keep them separate, by providing a layer of protection between a below-grade structure and the moisture present in the surrounding soil and fill. Waterproofing is especially important when the foundation lies below the water table or in a flood zone. Read on to learn about different approaches and materials used to waterproof foundation walls and slabs and specific detailing needed to provide a watertight enclosure. And, check out Part 2 of this series for specific guidance and examples to achieve a watertight enclosure.

Why is foundation waterproofing necessary?

Did you know? Water intrusion makes up more than 70% of construction litigation.Water

Foundations are basically holes in the ground that want to fill with water. Poor site drainage, through-wall penetrations, concrete cracking/mortar joints and movement, door/window/vent openings, flooding, high water tables, hydrostatic pressure – all contribute to the propensity for water to fill the subterranean void we have established. Foundation leaks are difficult and costly to rectify, not to mention designer/contractor financial liability. Water in a basement is water in a building. Excess moisture within a building is a recipe for higher RH and increases the potential for condensation, and mold and other allergens.

Luckily, foundation water intrusion is usually preventable. The goal is to identify all the potential water transport mechanisms, and address them, through good design practices, proper detailing, and quality execution. Read more

Bridgeport, CT – A Model for Resiliency

The pattern along the water’s edge in Bridgeport, Connecticut presents a familiar scene to New Englanders: active harbors and historic homes interspersed with blighted buildings and weathered infrastructure. The city’s architecture suggests a prosperous past and a difficult present. But this city—prone to acute and chronic flooding, and facing the ills of climate change and sea level rise—will not leave its future to chance. The City of Bridgeport has a plan to survive and even thrive in the next decades of environmental change, and may position itself as a national leader in resiliency.

Map of the study area showing proposed floor barriers and low impact development

Map of the study area showing proposed flood barriers and low impact development

In this context, “resiliency” refers to adaptation to the wide range of regional and localized impacts that are expected with a warming planet. Last fall, David Kooris, former Connecticut Director of Housing, visited SWA’s Norwalk office and presented Bridgeport’s vision: Resilient Bridgeport. The project began in 2014 when the City assembled a multidisciplinary design team, led by New Orleans-based Waggonner and Ball, to prepare an integrated resilience framework for the U.S. Department of Housing and Urban Development’s (HUD) Rebuild by Design Competition. The following year, Connecticut was awarded a HUD grant of $10,000,000 to develop a plan for reducing flood risk, improving resilience for the South End and Black Rock Harbor areas, and building an ambitious pilot project in the South End that combines physical barriers and low impact development.

Read more

Replacing Indian Point – An Update

Last year, we wrote about New York State’s plans for replacing the 2,000 megawatts of electricity provided by Indian Point. As of March 2018, Indian Point is still slated to close in April of 2021. The New York State Independent System Operator (NYISO) will reassess the plant’s retirement plan later this year and will continue reassessing this plan regularly to ensure that the state’s electricity needs are met. At the time of the initial closure announcement, the replacement plan leaned heavily on increasing transmission capacity to New York City, particularly via the proposed Champlain Hudson Power Express. However, there were still some gaps between downstate’s power requirements and the total power available without Indian Point.

Indian Point Image

In December 2017, NYISO released an Indian Point retirement assessment report and concluded that downstate’s power requirements will be met, providing that three proposed power plant projects in New York and New Jersey are completed on time. The CPV Valley Energy Center will be a 680 MW natural gas-fueled combined cycle plant in Wawayanda, NY, opening later this year. The Cricket Valley Energy Center will be a 1,100 MW natural gas-fueled power plant in Dover, NY, and is slated to begin power generation in 2020. An additional 120 MW of capacity will be added in Bayonne, NJ. As of the end of 2017, NYISO has determined that all three of these projects must come online by 2021 in order for the Indian Point shutdown to go through.

Read more

The Energy Code of the Future: Modeling and Performance-Based?

It has been clear for some time that energy codes are on course to require carbon-free buildings by 2030. Adoption at the local level will see some areas of the country getting there even sooner. For example, California has set net zero goals for its residential code by 2020. These developments have accelerated the debate about the effectiveness of energy modeling versus performance-based approaches to compliance.

Chart: Improvement in ASHRAE Standard

Improvement in ASHRAE Standard 90/90.1 (1975-2013) with Projections to 2030. Courtesy of Pacific Northwest National Laboratory 2015

Let’s start with energy modeling, where change is coming for the better. In the past, the energy modeling community has been required to continuously respond to energy code cycle updates with new baseline models. That is, the bar for uncovering savings would be increased each and every time a new energy code was adopted. Following a code update, program staff and the energy modeling community would have to go through another learning curve to determine where to set a new bar and how to model the changes. Read more