Over Pressure (Part One)

Steam pressure gets a disproportionate amount of attention. That’s partially due to the common, but not necessarily true idea that higher pressure equals more fuel use. Remember, it’s not the steam’s pressure that heats the building; it’s the steam’s heat energy. In fact, you can heat a building with 0 psig steam. You can even heat a building with a boiler that’s too small and never builds positive pressure. You can’t do it well, but you can do it.

System Operation

Thanks to the law of conservation of energy, we know that energy cannot be created or destroyed — it can only be altered from one form to another. In a steam heating system, the flow of energy goes like this:

  1. The boiler transfers Btus from the fuel to the steam (energy input).
  2. The steam transfers those Btus to the rooms.
  3. The rooms transfer those Btus to the outdoors (heat loss, aka the load).
image of radiator

Too much heat at any pressure

It’s important to keep this energy flow in mind because they are linked and self-equalizing. If the energy input exceeds the heat loss, the building temperature will increase, which, in turn, increases the heat loss. And, a building’s heat loss depends on the temperature difference between inside and outside and the amount of air transfer occurring. So, the best way to keep the heat loss down is to keep the indoor temperatures as low as possible, and keep the windows closed. Furthermore, in an apartment building, the coldest room drives the load in any steam-heated building and the Super needs to send enough heat around to satisfy the hardest-to-heat apartment.

Read more

Ventilation Idyll

Residential ventilation is really a tricky topic. But if you’re looking for a practical, cost-effective, holistic solution, go somewhere else. This post offers none.

Hopefully I can dig into practical solutions in future posts, but I think it’s important to be clear about why we ventilate and what an “ideal” ventilation system might look like in a new, efficient home. My ideal system is similar for both single-family or multi-family (though practical issues can be very, very different).

Purpose of ventilation: Remove contaminants that can compromise health, comfort, productivity, durability, etc. I’m sure there are more rigorous definitions out there, but this will work for now. There are other ways to lower contaminant levels:

Shangri La

Shangri-La image via Olga Antonenko

  • Emitting fewer contaminants from materials and activities is obviously good. Do this.
  • Actively filtering, adsorbing, or otherwise removing contaminants from indoor air can also be good. There’s talk about doing more of this, but I’m tabling it for this discussion. This may be something to keep an eye on down the road.

For most new residential buildings, mechanical ventilation is still be the primary means to remove contaminants. Or at least it’s the primary method that designers/developers need to plan for now.

If building a new, efficient home in Shangri-La, my ideal ventilation systems would look like this: Read more

Which LEED Rating System Do I Use? NC versus Midrise (Part 2)

LEED midrise imageHere’s a question that we’re often asked by our clients: “I’m building a new residential building, should I use LEED for New Construction (NC) or LEED for Multifamily Midrise (MFMR)?” The answer isn’t exactly simple, especially with the introduction of new credit requirements in LEED v4 and the fact that USGBC allows project teams to choose between the two rating systems. Ultimately, it will come down to a difficult decision based on the goals and final design of the project. So, in an effort to help clear up the confusion and possibly make the decision a little easier for you, we decided to break down a few scenarios that highlight key differences between the rating systems that may not be apparent upon first glance.

In our first installment, we took a look at a four story multifamily building and highlighted many of the key differences between the rating systems; you can find that post here. In this edition, we will explore the options for a different building type.

Read more

When the Rubber Meets the Road

 

As the Passive House standard continues to make waves across New York City and the U.S., an entirely new design process has evolved to respond to the challenges of higher insulation levels, balanced mechanical ventilation, and perhaps the most difficult hurdle – an air tightness level that most would think is impossible. For the recently certified Cornell Tech building on Roosevelt Island, the tallest Passive House in the world, a several year-long coordinated effort was required to achieve such a feat. So what is the requirement, how is it measured, and what are the strategies and considerations required to achieve it?

Read more

Transformers: Problems in Disguise

Sometimes a significant source of energy inefficiency in a building can be hiding in a place difficult to detect. In some buildings, a single transformer can have a substantial impact on electrical consumption.

Image of currents flowing through a transformer

click to enlarge

Some Background

Transformers are responsible for stepping the incoming voltage to a building up or down depending on the design, intended use, or connected equipment.  A standard electrical socket in a US home or office will deliver 110-120 volts AC. Some appliances require 240 V instead. Large mechanical equipment, such as the air handling units, distribution pumps and chillers found in commercial or multifamily buildings may require 460 V. In buildings where the incoming voltage from the utility does not match the voltage required by connected equipment, a transformer is used to deliver the necessary voltage.  The voltage entering the transformer is called the primary voltage and the voltage delivered by the transformer to the facility’s equipment is called the secondary voltage.

Read more