Environments for Aging: Designing Better Senior Housing

The 2019 Environments for Aging Conference took place last month in Salt Lake City, UT.

Last month, I had the opportunity to attend the Environments for Aging conference in Salt Lake City. Hundreds of professionals involved in the complex world of senior living gathered to learn from each other and to explore products and services that are designed for the senior population. It was not surprising to see the level of interest in the event; according to the US Census Bureau, 20 percent of the current US population will be 65 or older by 2029. The Baby Boomer generation, which accounts for the majority of that 20 percent, is moving into their 70s and are beginning to consider how and where they want to age. Some Boomers prefer to remain in their current homes in the communities that they helped build. Others want to move into smaller homes or prefer to transition to senior living communities. Many of these senior living communities are popping up both in suburbia and active urban centers in response to the current trend in senior housing preferences.

There are many senior housing typologies: among the most common are independent living, assisted living, and dementia care. Each type of living arrangement has specific needs that must be addressed from a design perspective.

Read more

Trends in Healthcare: Nurse Call Devices

“Trends in Healthcare” is a recurring series that focuses on exciting new designs and technologies we’re seeing in healthcare projects and provides best practices on how to ensure that these latest trends are accessible to persons with disabilities. We build on the wealth of knowledge we gain from working with healthcare design teams, construction crews, and practitioners to provide practical solutions for achieving accessible healthcare environments.


According to the U.S. Centers for Disease Control and Prevention (CDC), falls account for 3 million injuries treated in emergency rooms, 800,000 hospitalizations, and 28,000 deaths each year in the U.S. One in five falls cause serious injuries such as concussions/traumatic brain injuries and hip fractures. Not only is this a public health concern, it is extremely costly. According to the CDC, medical costs directly related to injuries resulting from falls totaled more than $50 billion in 2015.[1] Within hospitals and long-term care facilities, effective implementation of interventions and design strategies to reduce patient falls are key to increased patient safety and decreased medical costs. However, it may not be possible to eliminate patient falls altogether, so features like a properly installed nurse call system can be life changing.[2]

Accessible Nurse Call Stations

Most state and local standards and regulations require nurse call devices in each public toilet room and within inpatient bath, toilet, and shower rooms.[3,4] Where provided in spaces required to be accessible, the nurse call device must also be accessible. An accessible nurse call device is one that meets the following requirements:

  • All operable parts, including call reset switches, are within accessible reach range (15-48″ AFF);
    • NOTE: Determining compliant mounting height requires coordinating with the location of operable parts on the specific model used.
  • Operable parts do not require tight grasping, pinching, or twisting of the wrist to operate; and
  • Operable parts can be activated with no more than 5 pounds of force.

The location of operable parts differs between models of nurse call devices. It is important to determine mounting location based on the specific model of device being used.
Models shown (clockwise, L to R): Intercall Emergency Stations; Becas BeSmart Nurse Call System; Cornell Visual Nurse Call System

While these criteria appear straightforward, proper placement of nurse calls can become complicated when coordinated with minimum grab bar clearances and additional requirements under FGI, NFPA 99, NFPA 70, Ul 1069, UL 2560, and other local codes.

Read more

The Top 10 Party Walls Posts of 2018!

2018 has been a year to remember for SWA’s Party Walls blog. Our consultants have shared their passion for high performance buildings by recounting stories from the field and providing information, new findings, and best practices to improve the built environment.

Whether discussing topics based in New York City or Southeast Asia, here are our fan favorites from 2018…

Collage of blog images

Read more

SWA’s Accessibility Services – Leading the Industry Forward

Being visionary is one of the things we do best here at SWA, and we strive to lead the industry forward by sharing our expertise. Recently, Peter Stratton, Senior VP and Managing Director, Accessibility Services and Mark Jackson, Accessibility Consulting Director did just that by presenting on accessibility related topics in Washington, DC and in New York City.

Read more

Tech Notes: Meeting the Accessibility Criteria for Horizontal Exit Doors

Getting out of a building during a smoke or fire event can be traumatic for anyone. But, just imagine how traumatic it can be for a person who uses an assistive device, such as a wheelchair? If proper maneuvering clearance is not provided at doorways, then a person can become trapped.

Building code requirements for accessible means of egress have been developed to ensure that people with disabilities can exit buildings safely in the event of a fire. These requirements, found in chapter 10 of the International Building Code (IBC), establish proper maneuvering clearances at certain doors to safeguard against the potential for entrapment. Horizontal exit doors are an example of such doors.

Horizontal Exit Doors

horizontal exitWe’ve all seen them; in a hospital corridor, at the school cafeteria, or near the elevator lobby in a high-rise apartment building. They are doors that are held open most commonly by magnetic locks, which are connected to the building’s fire alarm system. When the building’s fire alarm is triggered, the magnetic hold-open device releases, and the doors close to contain smoke and flames.

 

The 2015 IBC defines a horizontal exit as:

“An exit component consisting of fire-resistance-rated construction and opening protectives intended to compartmentalize portions of a building thereby creating refuge areas that afford safety from the fire and smoke from the area of fire origin.”

 

Read more