MENU

Party Walls

Call to Action: Voting Open Until December 6th on the Changes Proposed to the 2021 IECC

ICYMI: The code change proposals for the 2021 IECC are open for voting by Governmental Member Voting Representatives (GMVR) from Monday, November 18th through Friday, December 6th, and your vote is instrumental in making buildings consume less energy! [Need a quick refresher on the code process? Check out our blog post here!]

Does your vote even matter?

Overall, there are not actually that many voters on a given proposal. In the energy proposals, last cycle, it ranged from about 200-400 voters per proposal, even though there were a total of 1,247 voters on the Group B codes, which includes the IECC.

IECC voting numbers

 

So a small handful of voters can entirely shape the future of the energy codes that dictate how energy efficient our buildings will be! If history repeats itself, while some online voters tend to align with the Committee, many online voters align their votes with those cast by their fellow ICC voters at the Public Comment Hearings. This happened 81% of the time in 2016. Unlike 2016, in this cycle all the electronic votes cast during the Public Comment Hearings will be rolled into the online vote tally (although those voters can still change their vote).

(more…)

New York City LL92 and LL94: Sustainable Rooftops

Image of solar panelsAs part of the Climate Mobilization Act, and in accordance with the its greater carbon emissions reduction goals, New York City passed Local Laws 92 and 94 in April 2019, mandating the installation of rooftop solar photovoltaic systems and/or green roofs on buildings across the city. The new requirements will go into effect on November 15, 2019 and will apply to all new buildings and any existing buildings completing a full roof deck or assembly replacement.

The Mayor’s Office estimates that the solar and green roof installations mandated by these bills will result in 300 MW of new solar capacity, 15 million gallons of new stormwater management capacity, 1 million tons of greenhouse gas reductions, and hundreds of green jobs. Based on these projections, this will account for close to 2.5% of the city’s overall emissions reduction goals.*

The laws require that solar and/or a green roof be installed on all available roof space. Areas deemed “not available” and excluded from the requirements include:

  • Areas obstructed by rooftop structures, mechanical equipment, towers, parapets, guardrails, solar thermal systems, cisterns, etc.;
  • Fire access pathways and zoning setbacks;
  • Recreational spaces that are recorded in the Certificate of Occupancy.

(more…)

Zero(ish) – Waste Living

In a world where everything seems to be packaged in two layers of plastic, where we are encouraged to constantly discard items to make room for new ones, and where social media drives our desire to consume the newest trends, it can seem impossible to reduce our waste. Living a zero-waste lifestyle seems almost too overwhelming. I find myself wondering, “How can I possibly reduce waste when industries target consumers to do the opposite?” and “Even if I do make changes in my own habits, is it enough to make a difference?

I struggle with the same paralyzing vastness that Jonathan Chapman mentions throughout his book Emotionally Durable Design. Paralyzing vastness describes the tendency to do nothing when a task seems too large to conquer, instead of taking smaller steps. In the past, the seemingly vast nature of zero-waste living discouraged me from doing anything beyond entry-level recycling, but I realized that minimizing my waste is something worth tackling. Therefore, I will be sharing some ideas for working towards a zero(ish)-waste lifestyle — because going from zero to one hundred, or in this case one hundred to zero can be scary — and I’ll include my experience implementing a few of the ideas myself.

WEEK ONE: Apartment Composting

In blogs and articles that speak on behalf of zero-waste living, the importance of sharing with others and asking for help getting started is most frequently emphasized. For example, my apartment complex does not offer any composting services, but the SWA office does (yay sharing!). For week one, I started composting and designated two small resealable containers — one for food waste, and another for paper towels — that are now living on my kitchen counter. I intended on utilizing these two bins throughout the week, and then bringing them to the office for a dump. If you have the ability to start your own compost bin, that’s great too.

While using paper towels throughout the week, I felt less bad about it knowing that they wouldn’t be going into the landfill, but I developed some questions: If I use the paper towel with cleaning supplies, can it be composted?… Is it worth collecting small bits of food waste when I could just eviscerate them in the garbage disposal?… Are garbage disposals bad for the environment and/or do they affect the energy utilized for wastewater treatment?

(more…)

Choosing Insulation for Carbon Value – Why More is Not Always Better Part 1

SWA’s Enclosure Group is acutely aware that insulation is the most important single material choice to maximize the enclosure’s thermal resistance over its operational life. Many of us in the building industry believe that, combined with a good continuous air seal, the highest insulation value makes the greenest enclosure, helping to reduce a structure’s carbon footprint and combat climate change. It may come as a surprise, then, that some of the most commonly used insulation materials are so carbon-heavy to manufacture and/or install, that for many decades they wipe away the carbon-energy savings they are supposed to provide.  The following is a detailed discussion of how and why this is, and what the industry is doing to change the equation.

Embodied vs. Operational Carbon

The built environment looms large in the climate picture, because almost 40% of the total carbon put into the planet’s atmosphere each year is attributed to buildings. Over the past 30 years of green building, we have overwhelmingly focused on operational carbon – the carbon that buildings emit as they are being used. Only recently have we begun to focus on embodied carbon – the carbon that goes into constructing buildings, which is typically far greater than the energy saved in the first decades of operation. Changes in energy codes are aimed at operational carbon, and even those organizations and standards that have been at the forefront of promoting sustainable building [LEED, PH] have not been quantifying or limiting embodied carbon, although they bring attention to it.

The Time Value of Carbon

Assuming that a building stands for many decades, or even centuries, its operational carbon will eclipse its embodied carbon over its lifetime, and therefore when the building’s carbon Life Cycle Assessment (LCA) is calculated, operational carbon savings will be more important than embodied carbon saved/spent in the long run. Why does embodied carbon deserve equal weight with operational carbon? Because of the total global carbon emissions from buildings, 28% is pegged to embodied carbon. That’s already a large percentage, but when you consider the near term, the first 30 years of a building’s life, the percentage jumps to about 50%. In effect, every new building is in carbon debt upon completion due to the huge amount of carbon emitted  in order to construct it., And in order for the climate to benefit from the energy savings provided by a well-insulated and sealed enclosure and a high efficiency energy system, the building needs to last and be used for a very long time. The problem is that we may not have 30 years, let alone 60, to pay off that carbon debt.

Total Carbon Emissions of Global New Construction from 2020-2050 graph. Operational Carbon represents 51% and Embodied Carbon represents 49%

In the first 30 years of a building’s operational life, 50% of its total carbon emissions are still due to embodied carbon (Source: Architecture 2030)

(more…)

Become a Carbon Hero with Five Easy Tactics

Before you can really dig deep into the advanced design concepts of embodied carbon analysis and whole building energy modeling, you must first perform some bare minimum prep work. An easy way to get the pre-schematic plan up on its legs quickly is to add qualitative performance measures to the architect’s program study or create an Owners Project Requirements (OPR) document. For this article, “qualitative performance measures” refer to the metrics that express embodied carbon, but can also include operational energy, water, and even healthy materials.

Integrated Design Process ImageAn integrated design process (IDP) anchors the architectural program to performance metrics such as carbon dioxide equivalents (CO2e), Energy Use Intensity (EUI), and zero Energy Performance Index (zEPI). So, by completing the IDP, you’re getting the basic tools to optimize embodied carbon and operational energy use in your design:

  1. Target the early phase of the project
  2. Prepare a Carbon Hotspot and Simple Box energy analysis to compare carbon sensitivity of different schemes not limited to wall and roof construction, massing, and solar exposure.
  3. Schedule a workshop with the design team and owner to discuss findings and recommendations.
  4. Establish performance targets such as total Carbon Dioxide equivalents as a basic program requirement.
  5. Choose a compliance pathway and verify design with Life Cycle Analysis and a Whole Building Energy model.

(more…)

Climate Week NYC: Seven Days of Climate Action and Discussion

 

Climate Week logoLast week, as I was writing this blog, I came across a New York Times article: “The Amazon, Siberia, Indonesia: a World of Fire.” By now, I’m sure most of us are aware that the Amazon Rainforest has been burning for weeks, but this deliberate act of environmental destruction will contribute to a feedback loop. These fires release carbon dioxide and kill the trees and species that not only remove greenhouse gasses from the air but are part of vital fragile ecosystems. As more climate-warming gasses fill the air, extreme weather patterns, drought, species loss, and global warming are exacerbated. These effects then accelerate the spread of infectious disease, global poverty, and human health defects. Overall, climate change and environmental degradation negatively affect both humans and the planet, which makes us less resilient and allows for climate change to accelerate even more aggressively. And the cycle continues.

So, for the sake of our (really wonderful) natural planet, and humankind, it is crucial that we try to hinder this feedback loop and make climate action a priority around the world. And, although individually we can try to have a more reciprocal relationship with the planet, our actions and voices carry more weight collectively, which is where Climate Week NYC comes in.

What is Climate Week NYC?

Organized by The Climate Group, Climate Week NYC is an annual week-long gathering for citizens and global leaders to join forces and take action to mitigate environmental harm caused by human activity. There will be a number of public events each day from September 23-29, including tours, film screenings, conferences, and more.

Fun fact: Swedish teenager and activist Greta Thunberg sailed across the Atlantic all the way from England to meet with UN Secretary-General Antonio Guterres, and to attend the United Nations Climate Action Summit, scheduled on the first day of Climate Week NYC!

(more…)

Recent Developments in Off-Shore Wind Energy Production and Renewable Energy Storage

Overview

There have been several local and global developments recently with regards to off-shore wind turbines. Advancements in energy storage from both wind and solar energy, coupled with the increased rate of adoption of wind turbines could serve as a major step towards a more renewable-based energy grid and a more sustainable future.

Image of off shore windmills

Block Island Wind Farm, courtesy of the US Department of Energy

Updates on Energy Production

First, let’s explore some recent news surrounding the adoption of off-shore wind turbines. On a global scale, Scotland’s Hywind project recently proved that technology developed for and by the oil drilling industry can be successfully applied to off-shore wind turbines.[2] The floating 30 MW wind farm, made up of five turbines off the Aberdeenshire coast, has been operational since October 2017. During a three-month period of stormy conditions from November 2018 to January 2019, the wind farm managed to continue energy production at 65% of their maximum capacity. Note that during this period, a North Atlantic hurricane produced swells up to 27 feet! Over the course of a year “maximum capacity” is approximately 135 GWh of electricity – or enough to power 20,000 Scottish homes. To ensure that the turbines can withstand weather events on that scale, the floating turbines are ballasted by 5,000 tons of iron ore, and 1,323 tons of chain anchor it to the seafloor. This off-shore farm proves that wind turbines can be successfully deployed in deeper waters where it would be increasingly expensive to extend the physical structure of the turbine tower to the seafloor. Additionally, the US, UK, Ireland, Portugal, Spain, France, and South Korea all have started to piggyback off the success of the Hywind farm in various ways. For instance, South Korea partnered with the Equinor, the primary backer of Hywind, to conduct a feasibility study for a 200 MW farm that would be located off the coast of Ulsan.[3][4][5][6]

(more…)

What the Climate Mobilization Act Means for Developers, Designers, and Construction Teams

 

Image of central park and New York City buildigns

The construction industry has been increasingly focused on meeting ever-tightening codes and achieving higher ratings in sustainability certification programs (e.g., LEED, Passive House, etc.). These standards do a good job of raising the bar, but there is a new bar in town and we’re not talking about whiskey.

Local Law 97

NYC’s Local Law 97 of 2019 establishes carbon emissions limits for buildings 25,000 square feet and larger. These emissions limits, which are based on current building performance data, will begin in 2024 and will rachet down in 2030 and beyond. While we continue to work with building owners and portfolio managers of existing buildings (“What Does the Climate Mobilization Act Mean for Building Owners?”), we need to make sure that new buildings and major renovations are set up for success. Developers, designers, and construction teams must take LL97 into account during design, construction and turnover to protect the value of these new assets.

A developer or asset manager’s least favorite word is probably uncertainty, and now there’s a whole new host of uncertainties to think about:

(more…)

Electrify Everything? Part 2.

Heat Pump Water Heaters in Multifamily Buildings

In Electrify Everything? Part 1 that I wrote several months ago, I mentioned that integrated tank heat pump water heaters (HPWHs) can work well in single family homes — even in colder climates. For example, we see quite a few installed successfully in basements in the Northeast. These devices remove heat from the surrounding air, so there needs to be enough heat in the basement air for them to work effectively. During the winter, a home’s space heating system probably needs to work harder to make up for the HPWH. In the summer, the HPWH provides a bit of extra cooling and dehumidification. We put together some guidelines a few years ago on how to get the most from these systems in single family homes.

Image of heat pump

Some places where I’ve seen problems:

  •   Installing a HPWH in a basement closet. Even if a closet has louvered doors, there’s not enough heat/air for a HPWH to work well.
  • HPWHs are relatively loud. If there’s a finished part of the basement (e.g., bedroom or office), the noise can be disruptive.
  • Sometimes there is trivial heat gain to the basement (from outdoors, mechanical equipment, etc.). When a HPWH removes heat from the air, such a basement can quickly become too cold for the water heater to work efficiently (and too cold for comfort if someone uses the basement).

But overall, HPWHs in single family basements can work effectively.

(more…)

Five Steps to Get Started with Net Zero Energy Buildings

Net zero buildings are becoming increasingly mainstream, with many jurisdictions adopting policies to move towards net zero new construction codes. A good overview of advanced energy codes is available on the Getting to Zero Forum, which includes a snapshot of activity around the country including Washington, DC, New York and Massachusetts.

What Does it Mean to be Net Zero?

The term “net zero” commonly refers to zero-energy buildings. In simple terms, a zero-energy building is one that produces as much energy as it consumes on an annual basis. There can be nuances and caveats to this definition, but for now, we want to bring you up to speed on five key net zero energy strategies to consider if you’re interested in developing a net zero building.

1. Maximize space for on-site renewable energy.

How tall is your building?

  • Any building over five stories will be challenging, if not impossible, to achieve net zero with on-site renewable energy production alone because building energy demand will likely exceed available site area. Maximize your solar with a smart layout and consider if other renewables, such as geothermal, are possible.
Image of roof layout

Typical roof layout for multifamily building, including necessary setbacks for fire access, mechanical equipment access, and shading from bulkheads. Fire access is based on FDNY guidelines.

Do you have other spaces available for solar photovoltaics (PV)?

  • Your development may have a separate parking garage or parking lot on site. These are great places to install a PV system, which can significantly increase the amount of on-site renewable energy production and help make achieving net zero more of a reality.

Do I have to have all renewables on-site to be net zero?

  • If you don’t have enough room for on-site renewables, you can look into purchasing off-site renewable energy options, such as community solar, power purchase agreements, or renewable energy credits.

Now that you’ve considered renewables, let’s move on to net zero building design considerations.

(more…)

The owner of this website has made a commitment to accessibility and inclusion, please report any problems that you encounter using the contact form on this website. This site uses the WP ADA Compliance Check plugin to enhance accessibility.