Solar Photovoltaics and New York Energy Code

Industry Trends

Over the past decade, the story of solar photovoltaic (PV) power has been one of both accelerating deployment and consistent, significant reductions in cost. This success has been driven by increasingly advantageous economies of scale, and supported by incentives and initiatives at all levels of government.

Figure 1. Solar PV systems have seen a dramatic reduction in cost

In late 2015, the federal Investment Tax Credit [3], a primary financial incentive for solar PV systems, was extended at its current rate of 30% through 2019, despite a contentious environment in Washington. It is scheduled to be stepped down through 2022, after which the commercial credit will expire and the residential credit [7] will remain at 10% indefinitely.

The National Renewable Energy Laboratory’s annual solar benchmarking report [4] shows that over the past seven years, PV system costs have dropped 58.5% in the residential sector, 59.3% in the commercial sector, and 68.2% in the utility-scale sector. As a clear sign of the times, utility-scale solar achieved the U.S. Department of Energy (DOE) SunShot Initiative’s goal of $1.00/W early this year, three years ahead of schedule [9]. According to the U.S. Energy Information Agency (EIA) [8], these trends should continue, leading to solar power’s increasing presence as a key component of the national electrical generation mix. The EIA projects solar to be the fastest growing form of renewable energy, increasing by 44% by the end of 2018 for a total deployed capacity of 31 GW and accounting for 1.4% of utility-scale electricity generation.

Read more

Five Year Solar Performance on Connecticut Home

Written by Gayathri Vijayakumar, VP – Senior Building Systems Engineer

Over the last 10 years, we’ve seen great strides in the solar PV market in the United States. Between the federal tax credit and utility-sponsored incentives, the price to install PV systems came within reach of many homeowners. For others, eager to make a positive impact on the environment, power purchase agreements with solar companies and no up-front costs made it possible to utilize their roofs to generate electricity.

While the calculated cost-effectiveness of solar panels relies on the future price of electricity (which we can’t predict), we can confirm that they do deliver energy. In a very scientific study of exactly one home, owned by a SWA engineer, five years of generation data is available. Sure, it’s not the pretty Tesla roof, but these panels were installed back in November 2011. At 4.14 kW, with no shading and great Southern exposure, the panels were estimated to generate 5,400 kWh/year of electricity in New Haven, Connecticut (Climate Zone 5). The panels have exceeded expectations, generating on average, 6,200 kWh/year, which is roughly 70-80% of the electricity required by the 2,500 ft2 gas-heated home and its 4 occupants.

Read more

High Performance Walls

Written by Joanna Grab, Senior Sustainability Consultant

Groggy and sleepy-eyed, I swung my feet out of bed this morning. Still waking up, I began the trek to my coffee pot, but was thrown off track when my bare feet stumbled (literally) upon a freezing patch of floor beside the door to my balcony. Suddenly wide-eyed, I ducked into the bathroom to rub my toes against my fuzzy bath mat. Outside, the city seemed to have surrendered itself to a single shade of gray, and though my feet were warming, I could feel the monochromatic January cold pressing its way through the metal window. I put on my architect’s (hard) hat and thought, “these are textbook examples of thermal bridging.” But aside from a chill or a draft here and there what’s the big deal? Well, let me provide a little insight.

Thermal bridging occurs when heat is lost through a less-insulated or more-conductive portion of a building’s exterior. On a frigid winter day, this means heat is lost where insulation is lacking, such as through a metal window frame or the floor slab in my apartment building. Ultimately, thermal bridging results in a less comfortable home that is more expensive to heat and cool.

Another hidden concern is condensation, which can be a consequence of thermal bridging. When warm air comes into contact with a cold spot on the floor or wall, water vapor in the air cools and collects as droplets on the colder surface. This can result in durability problems, as well as poor indoor air quality.

Read more

Green Your Holidays

It is the time of year that we splurge, whether it is food, decorations, or gifts. And that’s the way it should be, but why not splurge sustainably? No, I am not saying be a Grinch and don’t eat, decorate or gift, but there are alternatives that add a whole lot of holiday cheer without emptying your pockets or negatively impacting the environment.

Here are some tips and tricks that I use to keep my over-the-top holiday spirit and at the same time feel great about being sustainable throughout these festive months.

The Highlight of the Holidays – Food

Thanksgiving DinnerAh, food. Here’s where it gets tough. How do you stay sustainable when the holidays are the epitome of food leftovers? I mean, there are tons of recipes dedicated to all the leftovers from a very classic turkey sandwich to a very mysteriously filled shepherd’s pie. However, this is also where you can make your biggest mark on how “green” your holidays will be. Read more

SWA Helps Implement STEP, the Sustainable Technical Education Program

karla_butterfield

Written by Karla Butterfield, Senior Sustainability Consultant 

In a new and exciting opportunity, we’re partnering with Energize CT, the Connecticut Technical High School System, The Connecticut Light and Power Company dba Eversource, The United Illuminating Company, and The Connecticut Business & Industry Association (CBIA) Education and Workforce Partnership to help implement Green STEP (Sustainability Technical Education Program). This program will train CT technical high school students in a construction career track in energy, water, and resource efficiency.

Read more