SWA Keeps it Healthy in DC

City Market at O in Washington, DC: Picture courtesy of Bozzuto

A recent SWA Accessibility project, City Market at O, was featured as a local case study on health in design during a recent event held by the American Institute of Architects in Washington, DC. The day-long seminar, Healthy Design, Healthy Building, Healthy City: An Interactive Workshop, featured key leaders in the field of health in design who spoke on new design initiatives intended to improve the health and wellbeing of building occupants.

SWA moderated the case study panel discussion which included City Market leaders Richard Lake, Founding Principal of Roadside Development and Andrew Taylor, Project Architect with Shalom Baranes Associates. The panelists framed the discussion around the AIA 6 Principles for Designing for Health to highlight ways in which the project successfully embodies health in design.

SWA consultants assisted in achieving the first key principle “Safety” by ensuring safe access for people with disabilities. Check out the rest of the team’s healthy design strategies below! Read more

Accessible Design: Common Mistakes & How to Avoid Them

Part 2: Dwelling Units

As promised, we’re back with Part 2 of the most common mistakes that our accessibility group encounters when assessing for compliance with regulatory requirements for accessible design and construction. This time, we’ll focus on frequent problems that we have encountered within dwelling units. Remember, in order to save time and money on costly remediation once construction begins – and reduce the risk of exposure to future litigation – it is best to tackle these issues early in the design phase.

Here are just a few of the violations frequently identified by our inspectors:

1.  Doors: Clear Width

Clear width is measured between the face of the door and the opposing stop, when the door is open 90 degrees.

Clear width is measured between the face of the door and the opposing stop, when the door is open 90 degrees.

Every door within a dwelling unit that is intended for user passage must provide the necessary clear opening to  provide access to a person with a wheelchair, or other mobility aid. The minimum clear width requirement varies (32 inches nominal or 32 inches minimum), so it is important to consult federal, state, and local codes to ensure that the specified doors will comply. This requirement applies to all doors within the unit – it does not matter whether there are multiple doors providing access to a particular room.

Specifying user passage doors that are 3’-0” or 2’-11”, including doors to closets deeper than 24 inches, will help to ensure that a compliant clear width is achieved.

2.  Kitchen Clearance

Projecting appliances often encroach into the required clearance in dwelling unit kitchens.

Projecting appliances often encroach into the required clearance in dwelling unit kitchens.

The minimum clearance between opposing elements in a kitchen depends on whether the kitchen is a galley kitchen (40 inches) or a U-shaped kitchen (60 inches). Clearance is measured between the furthest projecting element of opposing countertops, appliances (excluding handles), and base cabinets.

Often, the range and refrigerator are not aligned with the edge of the countertop, as commonly drawn on plans. These appliances frequently project beyond the edge of the countertop and often compromise the required minimum clearance. If larger appliances are selected (or substituted) after kitchen layouts have been designed, it is important that the layouts are reassessed with the updated appliance dimensions to ensure that clearances are maintained.

3. Outlets, Switches, and Environmental Controls

Switches, electrical outlets, thermostats, and other controls intended to be used by the resident must be located within accessible reach range. Noncompliance often occurs when reaching over an obstruction to access the controls is required (e.g., kitchen countertops). Often, electrical subcontractors install light switches and outlets at a consistent height, which while compliant for an outlet mounted on a wall in the middle of the room, will not necessarily work for an outlet mounted over a counter. We highly recommend installing all switches, outlets, and other controls no more than 44 inches above the finished floor, measured to the top of the electrical box.

Dimensioning to the top of the electrical box for outlets mounted high on the wall and the bottom of the electrical box for outlets mounted low on the wall will ensure that all operable parts are fully mounted within accessible reach range.

It is never too soon to think about accessible design requirements. The earlier these common problem areas are taken into consideration, the easier it will be to ensure compliance with accessibility laws and regulations once the construction phase of the project begins. By planning ahead, it is possible to address the most widespread issues in the design phase, significantly reducing the amount of delays in the field. A little effort now could eliminate a lot of headaches later.

Air Sealing with Open Cell Spray Foam Insulation – Know the Risks

As the latest versions (2012 and 2015) of the International Energy Conservation Codes (IECC) push for more efficient homes, we are getting more questions from architects on how to achieve the air tightness requirements of 3 ACH50. There is no one correct answer, but it can be often achieved through taping of exterior structural or insulated sheathing, air sealing of wall cavities prior to insulating, and/or the use of insulation that is restrictive of air movement. The most common approach that we are asked about is the use of open cell spray polyurethane foam (ocSPF), as it is air impermeable (required thickness is dependent on the specific product, so check requirements in the ICC Evaluation Services Report), reasonably priced, and theoretically, doesn’t require any changes to standard builder practices. While it is true that ocSPF will provide air sealing cost-effectively, we typically do not recommend it in our cold climate region without additional measures due to risk potential over time. To effectively build a home with ocSPF, thoughtful detailing and a high level of execution is required to ensure that it remains effective 5, 10, 15…25 years from now.

ocSFP Window Flashing

While this wall assembly was not insulated with ocSPF, poor window flashing details are a common issue that we see and is one of the reasons we are cautious with this insulation approach.

  • ocSPF is vapor permeable, so there is a greater potential for condensation in the building enclosure than if closed cell spray polyurethane foam (ccSPF) is used. A hybrid approach of ccSPF and an alterative insulation (ocSPF, cellulose, fiberglass, etc.) is often used to keep costs down.
  • ocSPF can absorb 40% of water by volume. Therefore, if bulk water from leaks does make it into the building enclosure, the ocSPF will retain the water until saturated. Pinpointing the source of the leak may be difficult as the water can migrate within the foam.

Our main concern is that the performance of the product requires several trades to meet a high level of quality to ensure success and hope that the homeowners don’t unwittingly cause problems down the road through lack of maintenance. Here’s what we suggest…  Read more

CT Zero Energy Challenge (Part 1) – How Low Can You Go?

There were 11 projects entered into this year’s CT Zero Energy Challenge, sponsored by EnergizeCT.  The single- and multi-family homes taking part in this competition are designed and constructed utilizing innovative techniques in order to try and reach the illustrious goal of net-zero energy-use.

I’m excited to report that SWA worked with 4 of the homes entered into this year’s competition, including the first- and third-place winners! For each of the three winning projects, EnergizeCT has created a video to showcase the story behind the homes, and to highlight some of the most notable features.

Today’s video is about the first-place winner, a single-family home in South Glastonbury, CT, constructed by Glastonbury Housesmith. The owners, Carl Benker and Elizabeth Wegner are first-time homebuyers who wanted to be able to live as close to “off the grid” as possible. Check out SWA’s HERS-rater extraordinaire, Karla Donnelly, discussing the competition, and how this home came to achieve an amazing HERS Index Rating of a -23!

(Right-click and select “run this plug-in” if you cannot see the video below)

 

The project also won the 2015 RESNET Cross Border Challenge for lowest HERS score with photovoltaics (PV)!

You can read more information on SWA’s project here. 

An Insider’s Guide to Restaurant Accessibility

As a resident of Washington, D.C. for nearly ten years, I’ve spent a fair amount of time frequenting the city’s burgeoning restaurant scene. Much like my fellow Accessibility Consultants at SWA, even when we’re off the clock, we notice structural violations of federal accessibility laws on a daily basis. I would love to say that DC’s restaurant industry is an exception, but unfortunately there are still many challenges facing diners with disabilities in Washington.

Accessibility regulations that apply to restaurants are outlined under Title III of the Americans with Disabilities Act (ADA). Achieving compliance with the ADA can be a substantial task, but not without significant benefit. Recent statistics show that people with disabilities spend over $35 billion in restaurants a year. This is no small change for an industry with ever-increasing competition. Compliance also mitigates risk of litigation, which is particularly important as the U.S. Department of Justice and advocacy groups continue systemic investigations across the country.

Following are a few general rules of thumb to remember when providing equal access to guests with disabilities:

Read more